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. The final report documents the results of a research program designed o
oA,

~

2o further our understanding of the physical mechanisms which control the e
initiation and severity of nonlinear combustion instability in solid :’_
)

propellant rocket motors., —in- particular, the investigatiow was directed o
< N e ol a8 . . . o

towards “increased’ understanding}o the-*phyetcai mechanisms which influence o
.

the triggering of instabilities by random finite amplitude events such as e
the expulsion of motor debris out the nozzle. “v: =~ '.'__
>

The first part of this report describes the formulation and solution of :::;;

the machéﬁsticaf‘models of the physical mechanisms governing nonlinear wave :j:
propagation in two phase media and the transient burning response of the ey
propellant to both pressure and velocity oscillations.ﬁ An exhaustive study s
was conducted to identify and incorporate the best available '"shock i :j::
S - -
capturing'" scheme. The recently developed sharp combination of the Lax- s
-~ Wendroff, Hybrid and Artificial Compression schemes gives the analysis the =
"

ability to treat the multiple shock-wave type of instabilities “that are "_:
frequently observed in reduced-smoke solid rocket motors.  Ad hoc velocity X
coupling models were also incorporated into the analysis. ﬁSolutions are | ,«nf,‘.,o,,;v-'._.
...-presented demonstrating that pressure oscillations in unstable solid rocket ]
A

. » - .$‘

motors (with metallized as well as unmetallized propellants) reach the same -
. . . — BoY
limit cycle (amplitude and waveform) independent of the characteristics of oA
l.‘*

the initiating disturbance. o
.:‘,u

.y

The gecond part of the report describes the development of mathematical ‘.:'-T

N

models to describe the initial pulse produced in the chamber by several
x1 e

1
3
A
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- types of laboratory pulsers, / The combination of these models with the
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chamber instability analysis resulted in a unique capability to predict both

s

& =

“ % et

the initial pulse characteristics and the motor response to pulsing. The

¥ o+ ¥V ¥

validity of the combined models was evaluated by extensive comparison

between the analytical predictions and experimental data from pulse tests
obtained (under contract) by Aerojet Tactical Systems Company. The
capability of the model to predict the observed motor stability in several
test cases was demonstrated. Furthermore, excellent agreement was also
demonstrated between the measured and predicted initial pulse amplitudes and
waveforms, the temporal evolution of waveforms, and the harmonic content of
the waves. This investigation has lead to significantly enhanced
understanding of the acoustic energy exchange processes and pulse

characteristics which lead to motor triggering.
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CHAPTER |
INTRODUCTION

Tactical solid rocket motors are frequently subject to a combustion instability
problem at some point in the design cycle. When instability is encountered it can take
one of several forms, e.qg., linear or nonlinear, longitudinal, or tangential. Over the last
twenty years, considerable resources have been expended to understand, predict,
control, and eliminate combustion instability in solid rocket motors. Most of this effort
has been devoted to linear instability problems, and as a result, such problems can now
be treated in a rational, cost effective manner. Comparatively little work has been
accomplished towards the understanding and resolution of nonlinear combustion
instability problems. Thus, when nonlinear instabilities are encountered, the solution is

too often an expensive cut and try process.

Linear instabilities are characterized by small amplitude, sinusoidal oscillations
that originate from the amplification of infinitesimal random disturbances in the motor
chamber. On the other hand, nonlinear instabilities are usually characterized by large
amplitude oscillations having steep-fronted, shock-like waveforms. Nonlinear axial
mode instability in solid propellant rocket motors is initiated by random finite
amplitude events such as the expulsion of an igniter or insulation fragment through the
nozzle. When instability is initiated in this manner in a motor that is otherwise linearly
stable (i.e., stable to infinitesimal disturbances) it is said to be a "triggered" instability.
The existence of triggered instabilities is a direct result of the fact that all of the
acoustic energy gain or loss mechanisms in a solid rocket motor, e.g., pressure and
velocity coupled driving, nozzle and particle damping, acoustic mean flow interactions,
etc., are nonlinear, i.e., amplitude dependent to some degree. These same
nonlinearities also ensure that a nonlinear instability will not grow without limit, but
rather will eventually reach a limit cycle amplitude at which the net gains and losses

are balanced.
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NMonlinear axial mode instabilities usually result in pressure oscillations that
propagate as stcep-fronted waves which are actually weak shock waves. The acoustic
pressure and velocity oscillations are frequently accomianied by an increase in mean
chamber pressure (usually referred to as a DC shift) and increased mean propellant burn
rate. This increased burn rate is thought to be primarily a response to acoustic velocity

oscillations, thus, it is often referred to as acoustic erosi ‘ity.

Certain trends and characteristics of nonlinear ins ability have been documented.
However, attempts to form generally applicable conclusions have been stymied by the
number, complexity of, and mutual interactions between the governing physical
phenomena.  The ability to predict, avoid, or elim nate nonlinear instability is,
therefore, clearly contingent upon our ability to understand and model these

phenomena.

L fforts to understand and mode! nonlinear instcbi'lity date back to the 60's, e.g.,
References 1-3. The most recent work has been divided between so-called "exact" and
"approximate” mathematical approaches. The "exact" rmethods of Levine and Culick
and Kooker and Zinn® seek to numerically solve the nonlinear partial differential
equations governing both the mean and time dependent flow in the combustion chamber,
as well as the combustion response of the solid propellant. The "approximate" methods
of Culické ond Powell, et. al.,/ utilize expansion techniques to reduce the problem to
the solution of sets of ordinary differential equations. Culick and LevineB carried out o
brief comnparison of results obtained with these two approaches and found that within
certain limits the approxiimate techniques yield quite reasonable results. Each of these
methods has certain advantages, disadvantages and limilations with regard to accuracy,

computation time, generality, etc.
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The previously developed "exact" nonlinear instability programns were not capable
of treating the multiple traveling shock wave type of instability that occurs in the
reduced and minimum smoke tactical motors that have since been developed. Nor did
these analyses contain a model for velocity coupling; something which appears to be
required in order to predict the types of triggering events and DC pressure shifts that
have been observed. The objective of the present research is to extend and improve the
mode! developed in Reference 4 to the point where it can be used as a tool to enhance
our understanding of nonlinear instability; as a means to aid in the design and
interpretation of related experimental work; as a means to evaluate the validity of
advanced combustion response models; and as a design aid to solve or prevent nonlinear
instability problems. An outline of the previously developed nonlinear cormbustion
instability model describing two-phase flow in variable area solid rocket combustion

chambers is described in Appendix I.

In order to reach the stated objective, the numerical techniques utilized in
Reference 4 had to be replaced by more advanced methods and a model for addressing

velocity coupled effects had to be incorporated into the computer prograrn.

A critical investigation of the ability of finite difference integration methods to
accurately solve the one-dimensional, nonlinear, two-phase, hyperbolic, equations which
govern the propagation of shock waves in combustion chambers was conducted. The
extensive numerical study that was conducted and the results obtained for several iest
cases utilizing several condidate finite difference integration techniques are described

in Chapter 2.

As mentioned previously, the older "exact" codes were not capable of treating the

multiple traveling shock wave type of instability that occurs in reduced and minimum
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smoke motors. The capability of the modified model to accurately predict the
propaqgation of multiple shock waves in variable cross-sectional area rocket chambers

was examined. Results of this study are reported in Chapter 3.

The sensitivity of solid propellants to acoustic velocity oscillations parallel to the
burning surface has been known for many years. This phenomenon, termed velocity
coupling, has been observed in both motors and laboratory burners. These observations
also support the hypothesis that velocity coupling can be highly nonlinear, and that it is
the rmost likely cause of triggered instabilities and mean pressure shifts in solid rockets.
The development of a new improved model for velocity coupling was not considered to
be part of the present investigation. Rather, existing models were reviewed to

determine which, if any, should be incorporated into the analysis at this time.

Some of the interesting results obtained with the improved model, including the
effect of initial disturbance amplitude and wave form, combustion response, and
particle concentration upon limiting amplitude; and the ability of ad hoc velocity

coupling models to predict phenomena such as triggering and mean pressure shifts are

presented in Chapters 4 and 5, respectively.
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CHAPTIIR 2

A CRITICAL STUDY OF NMUMERICAL METHODS FOIR THE SOLUTION
OF

NONLINEAR HYPERBOLIC EQUATIONS FOR RESONANCE SYSTEMS

INTRODUCTION

This chapter presents the results of an investigation to select a satisfactory finite
difference integration scheme for solving the one-dimensional, Eulerian form of the
equations describing the propagation of steep-fronted, shock-like waveforins in variable
cross-sectional area ducts and two-phase solid rocket combustion chambers.4 The
suitability of candidate finite difference integration schemes for the intended purpose
was tested by applying themn to a similar but simpler problem; that of finite amplitude
shock-like wave propagation in a closed end tube. The equations describing the flow of
gas in the tube are identical to those describing the flow in a uniforin cross-sectional
area rocket motor - after deleting te:rms coniributed by the presence of particles in the
flow and terms describing the addition of mass momentun and energy by the

coinbustion processes.

in order to be acceptable for the intended application, a finite difference
integration technique imust: preserve the high freauency content of the waveforirs; be
relatively non-dissipative and non-dispersive after manv wave cycles; be capable of
describing a shock wave as a sharp discontinuity; and be capable of properly tren ing
the reflection of shock waves froin boundaries and the partial reflection and transinis-
sion at area discontinuities. Moreover, the test case under consideration involves wave
steepening from an irtially sinusoidal waveforin to a shiock wave and, due to entropy
generation by the shock anve, the possible return to a sinusoidal waveform after many

wave cycles. Thus, it is required that the numerical scheine have miniium diffusive
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and dispersive errors for both shock waves and harmonic standing waves propagating for
rmany wave cycles. It should also be pointed out that in solving a combustion instability
problem, numerically induced pre- and post-shock '"wiggles" do not just impair the
accuracy of the solution; they can lead to non-physical solutions by erroneousiy

"triggering" nonlinear combustion instabilities.

A shock wave is described mathematically as a surface of discontinuity with a
smooth solution on either side of the shock. The shock solution is governed by jump
conditions across the discontinuity. Since the assumption that the solution is simooth is
inherent to all standard convergence theorems for numerical schemes, it is possible9 to
construct a solution with the wrong speed of propagation. One option to avoid this
problem is to use shock-fitting schermes! 01112 that treat the shock as an internal
boundary and calculate values across the discontinuity utilizing the Rankine-iHugeniot
relations. However, this approach is impractical for the intended application (variable
drea ducts with discontinuous area changes) due to the large number of shock waves and
contact surface discontinuities that are created by internal reflections and intersec-
tions. Similarly, finite difference schemes that are modeled after and exploit the
mathematical theory of the method of characteristics, methods such os the
scherme 3, the split coefficient scheme !4, or the psuedo-characteristics scheme !, are
impractical for this specific test problem. Shock capturing implicit difference schemes
offer no particular advantage since the physical problem of interest typically requires

tirme resolution consistent with the stability restrictions of explicit methods.

An alternative to shock fitting is shock capturing. Methods that capture the
shock do so by integrating the governing equations across the shock. The capturing

approach to the calculation of discontinuous solutions has two essential defects: 1) A

discontinuity in the solution of a partial differential equation is approximated by the

7
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solution of a finite difference scheme which is a continuous transition connecting the

states on both sides. It has been shown!é that when the order of accuracy of the
numerical scheme is greater than unity, overshcots or undershoots are produced upon
crossing the discontinuity. These oscillations (termed wiggles) can: induce nonlinear
instabilities when coupled with combustion; damage the accuracy of and spuriously alter
the harmonic content of the numerical solution; trigger convergence to non-physical
solutions that violate the entropy condition;!7 or generate non-physical rarefaction
shocks!8. 2) When approximating a contact discontinuity by a continuous transition,
the width of the transition grows with time as n!/(1+R), where n is the number of time
steps and R is the order of accuracy of the finite difference scheme. Thus, in order to
maintain accuracy in the neighborhood of a contact discontinuity. a finer mesh than
would otherwise be necessary is required. This can significantly increase the computa-

tional time, especiallv in multi-dimensional calculations.

The stondard cure for the first problem (wiggles) has traditionally been the
addition of crtificicl viscosity terms tc the differential equations. 5averal types of
artificial ‘iscesity inethods capable of supnressing post-shock oscillations have been
developed‘évls’. However, such artificially induced diffusion also smears out the
discontinuities and dissipates the high frequency harmonics that are part of the physical
solution. Moreover, the rate of energy dissipation produced by artificial viscosity can
be comparable in magnitude to the net rate of energy gains or losses in many
combustion systems. The use of an artificial viscosity also precludes any efforts to
determine the actual particulate related energy damping rate in two-phase flow

systems.

As a result of the drawbacks of ortificial viscosity methods, numerous investiga-

tors have sought to develop other alternatives for suppressing pre- and post-shock
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osci'lations. It has been shownl!7 that first order monotone schemes yield the proper
shock location and do not generate wiggles upon integrating across a discontinuity.
Unfortunately, due to their first order accuracy, such schermes are highly dissipative
and excessively simear and damp discontinuities. An alternative to utilizing a monotone
schetne averywhere is to use it only near a discontinuity while using a higher order
scheme wherever the solution is siooth. The hybrid scherne of iHarten and Zwas20 is an
example of such a method. Other techniques use the second order scherne (without
artificial viscosity) everywhere and then reimove the oscillations by utilizing a Shuman

filter2! or enforce monotonicity on second and third order schemes, as done by Van

Leer.22

Several methods were developed recently to deal with the smearing of the contact
discontinuitv. These methods include Chorin's implementation of Glimm's method?Z3,
the ux Corrected Transport (FCT)-SHASTA Phoenical method of Book and Boris and
[ain%4, the Low Phase Crror Flux Corrected Transport (FCT)-SHASTA Phoenical
schermes of [oris and Hookzs, and the Artificial Compression Method (ACM) of
arten 20, Another recently developed sche me2/ is @ combination scheme consisting of
the Artificial Compression Method (ACM), combined with the Hybrid scheine20 gnd the
basic second order scherre of Lax-Wendroff28 (this combination scheme is termed
L'W+H+ACM). These schemes were combined to yield oscillation-free, sharp transitions

of discontinuities while maintaining a high order of truncation error wherever the

solution is simooth,

A starting point in the selection of the best available numerical scherme for this

. ~ Q .
tost case was an ex~ellent review paper by 50d.2?9  Sod tested several numerical
schermes for the shock tube test case. !dis results demonstrated tne superiority of the

"advanced" methods such as the FCT or ACM schernes, over the "basic' second order
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schemes of l_ax-Wendroff or MacCormack. It had been shown that the "basic" schemes
generated spurious wiggles upon crossing the discontinuity. Nevertheless, it has been
noted by Turkel30 (in another excellent review report) that "it is not clear whether one
needs to remove these oscillations except for aesthetic reasons. This seems to be
problem dependent. For problems with coinbustion, it is imperative to prevent
oscillations which falsely trigger the combustion process. . . . for dynamic situations,
the situation is not clear." The objective of this study was to clarify this situation,
complementing Sod's work, and to evaluate the relative accuracy of the candidate finite
difference integration schemes for problems describing shock wave propagatios over
fong periods of time (as compared to 20 to 30 time steps as done by 5od), i.e., to
deterinine whether initial wiggles are just an aesthetic imperfection, or if they yield

physicaily erroneous solutions.

For the following reasons, the random choice method of Glimm, implemented by
Chorin23, was not evaluated.  This technique is difficult to implement, as it
necessitates the evaluation of the location of the sample point with respect to the slip
line, sihocks, and rarefraction waves (8 options altogether). This poses an extremely
difficvit problem, especially when there are several shocks and rarefraction waves
traveling and interacting inside a variable area closed end tube (or rocket tmotor) tor
rany wave cycles. Furthermore, additional developments and applications of this
scheme utilizing random sompling3| or Van der Corput sompling32 indicate that though
the shock itself is captured over two or three grid points, the location of the shock is
often wrong. An hybridization of Glimm's method with Godunov's method33, vhere
Godunov's method is utilized at the vicinity of the discontinuity, resulted in the right
shock location. However, the shock resolution can be only as good as obtained by

Godunov's method, and hence, the shock discontinuity is captured over 4-5 grid points.

10
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[he results (either reported in the original papers, Sod's paper, or results of tests
conducted by ws) for the shock tube problem, utilizing the upwind second order
difference scheme34, or implicit variations of this schemme comnbined with central
spatial differencing, or alternating explicit upwind35 combined with MacCorimack
schernes3d indicated that these scheines cannot yield results that are as good as those
obtained by the FCT or the ACM type schemes for this test case. [or the samne
reasons, the psuedo-characteristic method of Corver‘S, the -scheime of Moref'ril3,
the Split Coefficient scheme !4, and the Upstream-Centered Sinite Difference schemes
of Van Leer37 were not tested. Van Leer's second order sequel rnethod to Godunov's 33

is a Lagrangian scherne that was considered unduly complicated for practical applico-

tions, especially in view of the results presented for the shock tube problem; results

that are qood, Hut no better than the much simpler FCT or ACM scheines.

Tha nuimerical scheines tested in combination with the current test problem of

finite amplitude propagation in a closed end tube were: the first order schene of
Rusanov3? Rusanov's method combined with artificial conpression, the "standard"
second order schernes of Lax-Wendroff28, Rubin ond Burstein38, and MacCorimack3®,
the hybrid scheme of Harten and Zwas20, the Flux Corrected Transport (FCT) SHASTA-
Phoenical of Book, Joris, and Hain2%, the FCT-SHASTA-Phoenical Low Phase Crror
(1_PH) of Boris and Book29, Hyman's predictor-corrector2?, and Harten's Combination of

the Artificial Compression Method (ACM), Hybrid and Lax-Wendroff scheines.2/

I order to facilitate the evaluation of the diffusive and dispersive errors of the
ditferent nuinerical schemes tested, the results of the test problems were spectrally
analvzeds Since the pressure-time history calculated at anv location along the tube is
stnilar to the pressure-time data that would have been neasured by a pressure

transducer o ated at that spatial [ocation in on actual test, an existing spectral
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analysis capcbility was utilized. This program was originally developed to perform a
spectral analysis of the data measured by a pressure transducer attached to a solid
rocket motor case during motor firing. The accuracy of the spectral analysis programn

is within +2%.

WAVE PROPAGATION It4 A CLOSED TUBE

Basic Equations:

The one-dimensional, unsteady, inviscid, Eulerian form of the nonlinear hyperbolic

equations of gas dynamics can be written in conservation form as follows:

- ap 3‘2“1 -
Continuity 3¢ + =0 0 (1)
. dpu , 3(ptpu’)
Momentum T + ™ 0 (2)
C T 2 C T 2
3 &l L] _3[ B,y ]
Energy 3t£)( Y t3 ) |+ T pu > + 2—) 0 (3)
Equations (1) through (3) may be written in a vector form as:
Fy +G(F)x = O (4)

where




Boundary Conditions:

The boundary conditions at both ends of the closed tube are those ¢. a rigid wall,
i.e., u = 0. The meth>d of characteristics was utilized to obtain solutions a1 the

- boundary poinis. Currenily, a simple Euler integratior along the characteristics is used.
Initial Condilions:

The geo neiry and unperturbed conditions for the test problems were as foilows:
tube length 1.22 meter (48 inches), pressure 6.895 MPa (1000 psi), temperature
_‘:. 3488.30K (6279°R), v=1.22. The transient solution was initiated by perturbing the
- steady siate with a first longitudinal standing wave disturbance (correspondira 1o a
" frequency of 526 Hz) having an amplitude of 20 percent of the mean pressure. The
- initial perturbed density and temperature were calculated using isentropic reistions
while the velocity remained unchanged. The chomber is divided into 50 equativ v aced

intervals using 51 grid points.  All the schemes were tested at a Courant number 7))

:’._:: equal to 0.6. This number was chosen for three reasons: (1) Owing to 1 lorae
variation of the mean flow inside a rocket motor (as in most flow systems), anc as o
_-:.j deal with areas of different velocities, and, hence, different Courant numbers {1vr ~iv
-j::f varying from 0.3 1o close to one); (2) Since each numerical scheme has a VW onrang

number al which the results are best, operating at 1hat Courani number would *avor

LRI
Ll

e

that specific scheme. Operating at Cp = 0.6 seems to be a fair region with respoct to

.
w _ e
" ‘l

.

all schermes; (3) Sometimes il is necessary to choose a smaller computational v 'n

2

certain parts of the system having large gradients (as happens in nozzles, for cxarpine),
thus forcing the utilization of a low Courant number in regions of iarge arid sfoeos. A
testing at Cy - 0.6, a value in the middle of the expected operating range, ecaves o

better evaluation of the schemes at C, other than the one most suitable for the spocific
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Fig. 1. Repeated shocked sound wave.
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: scheme used. Other solutions were obtained at higher and lower Courant numbers to
:': confirm that the conclusions regarding the relative merits of each scheme are valid in
general. Whenever  the resulls obtained at different Courant numbers differed
5 significantly from those obiained at Cp = 0.6, they are presented and discussed.
- FExacl Solution:
- An analysis of finite amplitude sound pressure w ive propagation in an unbounded
‘ medium, neglecting the effects of viscosity and heat transfer, is described in Reference
‘ 40. Since the speed of propagation is dependent upon the local temperature, different
portions of the wave will travel with different speeds, resulting in wave steepening. [t
is shown that a finile amplitude waveform will reach a stable sawtooth-like shape,
referred to as a shocked sound wave or a repeated shock wave, as shown in Fig. 1. Once
::j'. the waveform reaches this sawtooth-like shcp;z, effects of entropy production in the
fluid doe to passage of the shocked wave (when neglecting the effects of viscosity and
':d heat transfer) will attenuate the shocked sound wave, but its shape will not be
\ distorted. Nevertheless, when the amplitude reaches a very low level such that
nonlinear wave steepening effects are more than checked by diffusion, the sound wave
can no longer maintain its shocked state and will eventually reduce to an harmonic
waveform. A spectral analysis of the sawtooth-like waveform (donme by Fourier Series
*- representation of the wave) indicates that energy contained in the higher modes falls as
N l/n2 with respect 1o the energy contained in the fundamental mode (where n is the
‘ mode number).  The calculated (based on the exact analysis) amplitude decay rate
corresponds very closely to those calculated utilizing the FCT or ACM schemes (which
-: will be shown later),
3
g
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RESULTS

Figure 2a shows the time evolution of pressure oscillations at an end of the tube,
obtained by utilizing MacCormack's method. Wave steepening, shock formation, and
shock amplitude decay with time are evident in this figure. Expanded views of the
pressure oscillations at the end of the tube between nondimensional times of 0 to 10,
20 to 25, and 50 to 55 are shown in Figs. 2b to 2d, respectively. The appearance of
wiggles after the wave steepens is shown in Fig. 2b. The time evolution of these
wiggles into discrete humps in the waveform is shown in Figs. 2c and 2d. The absence
of the higher harmonics is indicated by the discrete humps in the waveform. These
figures demonstrate that wiggles are not just a distracting aesthetic phenomenon, but
given enough time, develop into an erroneous solution. It should be noticed that the

number of discrete humps reduces with time.

Figures 2e through 2g show the time evolution of Power Spectral Density as a
function of frequency. It is shown that at the nondimensional time interval of 10 to 20
there is an erfoneous arnount of energy in the eighth to tenth harmonics. At a later
time interval (nondimensional time 20-30), the location of this erroneous energy
reaches the sixth to eighth harmonics and finally (nondimensiona!l time 50-60) reaches
the fourth to sixth harmonics. The energy in modes higher than the one at which
erroneous energy is located vanishes rapidly due to large numerical dissipation. The
pressure solution with a number of discrete humps is similar to classical solutions

obtained by utilizing a truncated Fourier series representation.

Figure 2h shows the time evolution of accumulative Power Spectral Density as a
function of mode number for this test case. It is shown that the erroneous high energy

is moving from higher to lower modes with time and that the percentage of energy in

16
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Fig. 2a Time evolution of normalized pressure oscillations at an end of the
chamber (MacCormack).
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Figs. 2b-d. Expanded views of the normalized pressure oscillations at an
end of the chamber (MacCormack),
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Figs. 2e-g. Time evolution of Power Spectral Density as a function of
frequency (MacCormack).
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the fundamental mode goes down with tirne. This constitutes a numerical error since

energy transfer among modes happens only as the shock is formed, when energy is
transferred from the fundamental mode to higher modes due to wave steepening. Once
the shock is formed, no further waveform changes or energy transfer between modes
should accur. Moreover, there are no known physical processes present in the system
that can cause a transition of energy frorn a higher mode to a lower mode. Thus, the
observed energy transfer from higher to lower mcdes is a numerically induced
phenomena that relates to the truncation error. The tirre variation of the accumulative
power spectrum results fromn the combination of dissipative and dispersive errors of the
numerical scheme, where the dispersive errors cause pressure signals to travel at the
wrong speed, while the dissipative error causes over-attenuation of the high frequency

imodes.

To examine the effect of Courant number on the dissipative and diffusive errors
of the MacCorinack scheme, the test case was repeated at several Courant numbers
ranging froim a high of C, = 0.98 to a low of C = 0.2. Spectral analysis of the results
obtained with C = 0.98 indicates that the initial erroneous energy is contained in the
5 and 16 harmonics. At the nondimensional time of 50 to 60, the erroneous energy is
contained in the seventh to ninth harmonics, each containing more energy than the
fundamental mode itself (as shown in Fig. 2i). Results obtained with C, = 0.3 indicate
that the initial error appears in the seventh to ninth harmonic: at the nondimensional
tirme of 50 to 60, the fourth harmonic contains significantly more energy than the
fundarmental mode (as shown in Fig. 2j). In this connection it should be mentioned that
@ decrease in Courant number results in more high harmonic energy dissipation.
b xanination of the amplitude of the last computed waveform (nondimensional time 58
to o0)) indicates that the inaximum goes down with Courant number from a value of 3%

of the mean pressure with C = 0.98, to 11% at C = 0.8, to 9% at Cn = 0.6. The
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maxirnum amplitude value then goes up with further decreases in Courant number, to a

value of 1'% at Cn = 0.4, and 3% at Cn = 0.2,

A linear analysis of the dispersive and dissipative errors of the MacCormack
scheme as a function of Courant number was conducted in Reference 34. It has been
shown that for all Courant nuinbers, both the dispersive and dissipative errors (per tire
step) increase with frequency. Dissipative errors increase with increase of Courant
number from 0.1 to about 0.6 and then decrease. Dispersive errors decrease with
increase of Courant number. These results, although obtained by_linecr analysis, are in

excellent cgreement with the results obtained for this nonlinear test case.

The results obtained utilizing the classical second order scheme of Lax and
Wendroff are shown in Figs. 3a through 3j. Figure 3a shows the time evolution of
oressure  ascillations at an end of the chamber. Expanded views between
nondimens’onal time intervals of 0 to 10, 20 to 25, and 50 to 55 are shown in Mgs 3b,
3, and 3d, respectively. 1t is shown that the initial post-shock oscillations develop in
tirne into « number of discrete humps. The number of humps goes down with time until,
at a nondimensional tiine of 60, there are only 4 humps. The spectral analysis, shown in
Iigs. 3e, 3f, and 3g for the nondimensional times of 10-20, 30-40, and 50-60,
respectively, clearly demonstrates the erroneous transfer of energy. Initially, there is
excessive energy at the tenth and eleventh harmonics. This enerqy propagates towards
the lower harinonics until, at the end of the solution, it is shown that there is g
significant armount of excessive (erroneous) energy in the fourth to sixth harmonics. It
should be noticed that initially 99% of the total energy is contained in the first |5
harinonies.  Towards the end of the solution, however, that saine percentage of energy

is contained in the first seven harmonics, while the energy contained in the harmonics

above the eighth has been totally dissipated. Figure 3h which portrays the time
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variation of the accumulative PSD as a function of the respective harmonics, clearly
demonstrates the erroneous energy transfer and the dissipation of energy in the higher

harmonics.

An investigation was conducted to examine the effect of variations of Courant
number upon the dispersive and dissipative errors of the Lax-Wendroff scheme. Figures
3i and 3j show the time evolution of pressure oscillations between the nondimensional
time intervals of 0 to 10 and 50 to 60, respectively, obtained with Cpn = 0.98. Except
for a single overshoot, the solution is almost perfect, as indicated by both the pressure

data and the spectral analysis results.

Wiggles appear in the solutions at Courant numbers lower than 0.94. As Courant
number is reduced, the location of the erroneous energy shifts to a lower harmonic.
Thus, for instance, at the nondimensional time interval 50 to 60, the erroneous energy is
located at the sixth and seventh harmonics with Cpy = 0.8, fourth and fifth harmonics
with C = 0.6, fourth harmonic with Cp, = 0.4 (about the same energy in the fundamental
and the fourth harmonics), third and fourth harmonics with Cp, = 0.2 (with significantly
more energy in the fourth harmonic than in the fundamental mode), and third harinonic
with C, = 0.1 (with equal amounts of energy in the first and second harmonics and
significantly more energy in the third harmonic). It should be noticed that the
amplitude of the last computed waveform (nondimensional time 58 to 60) changes very
little with Courant number, in contrast to the results obtained with MacCormack's

scheme.

The results obtained utilizing the Lax-Wendroff and Rubin and Burstein scheimes
are, as expected, very similar. Moreover, the results obtained by these scheines are

sirnilar to the results obtained by utilizing MacCormack's scheme. A coinparison of the
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results indicates that: (I) The first post-shock wiggle appears after the third wave

cycle (LW and RB) when the wave is fully shocked, compared to the second wave cycle
(with MacCormack) when the wave front is steep, but not yet fully shocked; (2) The
percentage of energy (or Power Spectral Density) contained in the fundamental mode is
higher, and the excessive high energy in the higher modes is somewhat lower with the

Lax-Wendroff and Rubin and Burstein schemes.

All of the earlier methods, i.e., MacCormack, Lax-Wendroff, and Rubin and
Burstein were utilized without adding artificial viscosity. The addition of an artificial
viscosity term to a numerical scheme was conceived as a way to damp post-shock
oscillations. Artificial viscosity does reduce post-shock oscillations, but at the expense
of the higher harmonic components of the waveform. The effect of an artificial
viscosity on the solution over many wave cycles was explored using Hyman's Predictor-
Corrector scheme (as described by Sod29). This technique demonstrated poor results
for the shock tube tests and was uﬁ!iz;ed here only to demonstrate the effect of varying
the amount of energy dissipated through artificial viscosity. Results obtained utilizing
this method with a high value of artificial viscosity (§ equal unity in Hyman's method)
indicate that high artificial viscosity prevents a shock from ever forming and the
deviations from a perfect sine wave are never large (as shown in Fig. 4). Spectral
analysis of this solution shows a cornplete absence of higher harmonic content.
Initially, only the first three harmonics are excited while at a nondimensional time of
60, 99% of the energy is contained in the fundamental mode. Reducing the artificial
viscosity coefficient ( § = 0.3, the lowest value at which Hyman's method remains
stable) yields a much steeper waveform, but one whose higher harmonic content is still
less than it should he (as shown in Fig. 5). Initially, fifteen harmonics are excited, but
only the first six harmcnics remain excited after 30 wave cycles. As time increases,

the action of the artificial viscosity continues to preferentially damp the higher

harmonics causing the solution to further degenerate.
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Another scheme that utilizes artificial viscosity to damp pre- and post-shock
oscillations is the first order scheme of Rusanov. The results obtained by applying this
scheme are strongly dependent on the ratio of w/C, where Cn <! and 4 is the
artificial viscosity coefficient. Figure 6a shows the results of applying this scheme
with w /[C = |, where Cy = w = 0.8, A wiggle appears in the solution after the shock
formation. Nevertheless, due to energy dissipation by the artificial viscosity, the
wiggle does not develop into a set of discrete humps. The spectral analysis of this case
shows that initially as many as |8 harmonics are excited, with erroneous energy
contained in the twelth to fifteenth harmonics. Closer to the end of the run the
excessive energy has propagated to the seventh harmonic and energy contained in the

twelfth and up harmonics had been totally dissipated.

Figure éb shows the results of applying Rusanov's scheme with v /C, = .11,
where Cq = 0.8. The first post-shock wiggle appears after 4 wave cycles, however,
between nondimensional times 40-60 there are no wiggles present and the waveform,
although steep, is not in the shocked state. The spectral analysis of this case indicates
that initially there is very little excessive energy in the eleventh and twelfth modes,
while up to |7 modes are excited. As time progresses, artificial viscosity continuzusly
dissipates the energy in the higher modes until finally, at the nondimensional iimse

interval of 50-60, only 8 modes are excited.

Figure 6c shows the results of applying Rusanov's scheme with an « /Cp ratic of
1.45, and C, = 0.8. Excessive energy dissipation through artificial viscosity prevents
the shock from ever fcrming and the deviations from a perfect sine wave are just slight.

Spectral analysis of this case indicates that initially only the first ten harmonics are

excited, while after the nondimensiona! time of 22, only the first one is excited. The

amplitude values reached by the waveforms at the nondimensional time of 60 as a
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:s:‘ function of & /C, were tabulated. Analysis of these results indicates that the
i amplitude is proportional to the ratio w /Cp to the power of 2.2163. it is concluded that
\ by fine tuning the ratio of «/Cy (possibly in the region f.il< «/Cpn 1.25), it is possible
j to achieve optimum steepening without generating wiggles. Nevertheless, since the
spectral analysis of even the best solution (with w /Cp of [.I11l) indicates excessive
damping of high modes by the use of artificial viscosity, this optimum solution cannot
:.'; be as good as the solution obtained by the FCT or ACM type schemes (as will be shown
; later) that preserve the high frequency content of the waveform. In this connection it
should be noted that Sod29 has shown that results obtained for the shock tube problermn
, with Cn = 0.9, w«= 1.0, anc¢ w/C, = I.11]| are quite poor and that the addition of
o artificial compression resulted in great improvement. Figure éd shows the results for a
$ similar test (Rusanov and ACM) with T = 0.83, w = 1.0, and «/C, = i.17. This rutio
.
,. was chosen in accordance with the above study (i.e., optimum region of operation). A
.. wiggle that appeared in the solution after shock formation disappeared at later times,
\ ; as was the case with the Rusanov scheme itself. The waveforms between
-; nondimensional times 50 and 60 are significantly steeper than with Rusanov's scheme
. without artificial compression. The spectral analysis data indicates that the addition
: of ACM resulted in the initial excitation of more higher harmonics (25 modes were
: excited with ACM compared to |7 without ACM). In addition, despite energy
A‘ dissipation from the higher modes due to artificial viscosity, the first 20 harmonics are N
still excited towards the end of the test, resulting in a steeper waveform. \
Monotone schemes are known30 to capture shocks without overshoots and ta yield lﬁ‘
the correct shock location. Unfortunately, linear monotonz schemes are only first 3
7 order accurate. An improvement, suggested by Harten and Zwas2! was to form o

hybrid difference operator which combines the classical second order Lax-Wendroff2b '

scheme with a first order monotons seheme. Tne [irst oraer mongtonic sobheme s R
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activated only in the vicinity of admissible discontinuities while the second order
scheme is applied to the smooth portion of the flow. Nevertheless, it is recognized
that the first order accurate monotone scheme produces excessive smoothing of the

shock (i.e., excessive energy in the low frequency modes).

The results obtained utilizing this hybrid scheme are shown in Fig. 7. Figure 7a
shows the time evolution of pressure oscillations between nondimensional times 0 and
60. It is shown that a shock is formed after 3 wave cycles, and that the waveform
remains steep throughout the duration of the solution. The spectrai analysis data
indicates that initially the first 25 harmonics are excited, while towards the end of the
test, only the first 8 harmonics remain excited. The time variation of the accumulative
percentage of Power Spectral Deﬁsify (PSD) contained in the respective harmonics for
this scheme (shown in Fig. 7b) indicates that there are no erroneous shifts of power
spectral density among the high order modes. Nonetheless, since the scheme is based
upon transfer to a linear (first order accuracy) scheme at shock transitions and contact
discontinuities, the lower harmonics contain more energy than should have actually
been there (for instance, the fundamental mode contains 70 percent of the total
energy), and the energy in the higher modes has been excessively dissipated (99.3
percent of the total energy that was initially contained in the first |5 harmonics is

finally contained at the first six harmonics).

Figure 7c shows the dependence of the accumulative PSD upon Courant nun.ber
and the number of grid points. It is shown that dissipation of energy due to diffusive
errors increases significantly as Courant number decreases (as shown by the increase of
energy contained in the lower harmonics). Conversely, (as should be expected, due to

the first order accuracy cf the monotonic scheme), it is shown that the energy

dissipation due to diffusive errors decreases with an increase in the number of mesh
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points. With 93 points, at least |8 harmonics rermain excited towards the end of the

test. An expanded view of the time evolution of pressure oscillations between

nondimensional times 50 to 60 (obtained with 93 mesh points) is shown in Fig. 7d.
Excellent shock resolution is demonstrated. In this connection it should be mentioned
that the excellent shock resolution obtained with 93 mesh points, combined with a
significantly reduced high frequency energy dissipation vyields a much better
approximation to the exact solution. Indeed, the energy distribution among modes
obtained with 93 points is very similar to the energy distribution obtained with the
combination scheme of Lax Wendroff, Hybrid and Artificial Compression Method (as

will be presented later).

The first of the Flux Corrected Transport (FCT) Schemes tested was the FCT-
SHASTA-Phoenical scheme, developed by Boris, Book, and Hain.24  This method
combines the two step Lax-Wendroff scheme with antidiffusive correctors that contain
higher order terms which are subject to a limiting routine in order to preserve the
monotonicity of the provisional results. Following Sod2?, the variable diffusion/

antidiffusion coefficient y, was set to 0.125.

Figure 8a shows the time evolution of pressure oscillations at an end of the tube
between nondimensional times 0 and 60. The expanded view of the pressure oscillations
between nondimensional times 20 to 30, and 50 to 60 are shown in Figs. 8b and 8¢,
respectively. 1t is shown that the small initial pre-shock error develops with time into
a pre-shock wiggle. Moreover, there is an observed curvature in the center of the
expansion wave, instead of the anticipated straight line. The shock itself is captured

over 4 grid points, even after 5260 time steps (30 wave cycles).
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The time variation of the accumulative power spectral density as a function of the

respective harmonic indicates that after the shock formation, there is a slight decrease
in the percentage of energy contained in the fundamental mode and a slight increase in
the percentage of energy contained in the second to tenth harmonics, while the
percentage of energy contained in the higher harmonic (above ten) has sormewhat
diminished. In addition, this data shows that there is initially some excessive energy in
the 8th and 9th harmonics, that propagates towards the end of the run to the 7th and
8th harmonics. In this connection, it should be mentioned that variations of the energy
content above the seventh harmonic are within a quarter of a percent, which is within

the error limitations of the spectral analysis program.

Overall, the FCT-SHASTA-Phoenical scheme yielded good results for these test
conditions. However, when this sc‘:heme was utilized to solve the same problem with
initial disturbances of higher amplitudes (0.4 and 0.6 of the mean pressure instead of
0.2) the scheme yielded erroneous results. Figures 8d and 8e show the expanded views
of the time evolution of calculated pressure oscillations between nondimensional times,
20 to 30 and 50 and 60, respectively, in response to a fundamental mode disturbance
with an amplitude equal to 40% of the steady pressure. Figures 8f and 8g show the time
evolution of pressure oscillations between nondimensional times 20 to 30, and 50 to 60,
respectively, for an initiai disturbance with an amplitude equal to 60% of the steady
pressure. These figures show the development of a small imperfection at the center of
the expansion wave to either a wiggle, or, for the higher amplitude cases, to a second
shock. Analysis of the spectral data indicates only minor changes in the energy
distribution armong the modes as a function of time, such as a slight energy increase in
the fundamental mode and slight energy decrease in the higher harmonics. These minor

changes presumably cause the distortion observed in the waveform.
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Figures 8h and 8i show expanded views of pressure oscillations between
nondimensional times 20 to 30, and 50 to 60, respectively, obtained with Courant
number of 0.6, 93 grid points and an initial disturbance arnplitude of 40% of the steady
pressure. A comparison with results obtained with the same initial disturbance
amplitude for the standard test case (i.e., Cn = 0.6, 5| grid points) indicates that both
solutions have a curved expansion instead of the straight line expected from the
analytical solution of an N wave). However, the solution obtained with 93 grid points
indicates that a numerically induced shock is formed at the center of the expansion
wave. The steepening process of an initial error into a second "shock" wave is of great
interest. The initial slight "wiggle" is treated by the numerical scheme as an adverse
density gradient (or as a compression wave) and thus it acts to steepen it. The density
gradient increases until it becomes large enough to be treated by the system as a
discontinuity. This process of "artificial steepening" is very similar to the steepening
process observed when utilizing a numerical combination scherme that incorporates
artificial compression. The addition of artificial compression was conceived as a way
to steepen shock transitions that were smeared by the first order monotonic schemes.
Unfortunately, most of these combination schemes treat any arbitrary disturbance with

a high enough density gradient value as a shock and will steepen it.

The FCT-SHASTA-Phoenical Lax-Wendroff scheme was also tested with several
Courant Numbers varyir.,g from 0.3 to 0.85. With Courant number of 0.85 the initial
single pre-shock wiggle develops into a series of wiggles (as shown in Fig. 8j). In
contrast, the results at Cn = 0.3 indicate no pre-shock wiggle; rather, a post-shorck

wiggle appears in the solution (Fig. 8k).

In conclusion, it has been shown that FCT-SHASTA-Phoenical Lax-Wendroff
scheme yields very good rec’lts for low amplitude disturbances, but yields erroneous

results for high armplitude disturbances, when calculated over many wave cycles.
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Figs. 8f-g. Expanded views of the normalized pressure oscillations at an end
of the chamber (FCT-LW, APO = 0.6P).
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Figs. 8h-i. Expanded views of the normalized pressure oscillations at an end
of the chamber (FCT-LW, AP0 = 0.4P, 93 grid points).
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The second of the Flux Corrected Transport schemes tested was the FCT-
SHASTA-Phoenical Low Phase Error25 (FCT-LPE). This scheme minimizes phase
errors (i.e., dispersive errors) instead of minimizing diffusive errors. The rationale for
this modification is: diffusive errors generally affect the high trequency content (i.e.,
shor! wavelength) rather than the low frequency conteni (i.c., long wavelength). Since
the high frequency modes usually also suffer the most dispersive errors, doamping of
these rmodes may actually reduce the overall crror. The imporiance of reducing phase
errors is enhanced when the velocity is predominantly in one dir:ction {as happens in a
rocket motor). For the square wave test case,25 this scheme demonstrated the best

results of all the FCT explicit schemes developed to that date.

Figure 9a shows the time evolution of the oscillatory pressure ampiitude ai an end
of the tube obtained by utilizing this scheme. The expanded view of pressure
oscillations between nondimensional times 50 to 60 (shown in Fig. 9b) indicates thai ihe
initial pre-shock error develops in time into a p-re~shock wiggle. It shouid be noticed
that the initial shock transition is not sharp, but rather is rounded and becomes even
more rounded with time, indicating attenuation of enerqgy in the high harmonics. An
analvsis of the spectral data indicates thai: the percentage of enerqy in the
fundamental mode is higher than with the FCT-LW scheme, and that the second through
cighth harmonics have slightly less energy; less modes are initially excited than with
the FCT-LW scheme; the attenuation of energy in the higher modes is faster; and that

the cnergy in some higher modes (13 and above) had actually been dissipated altogether.

The results obtained by utilizing this scheme to solve the same test probiem with
hiqher initial disturbance pressure amplitudes (0.4 and of 0.6 of the steady pressure} are
very similar to those obtained with the FCT-SHASTA-Phoenical scheme, except for the

addition of a pre-shock wiqgle. Similar conclusions are drawn with respect 1o the
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results obtained with lower Courant numbers (and 51 grid points) or with 93 grid points
(and Cp = 0.6). lnstead of the expected improvement that should have resulted from
reducing the spatial mesh size, the resuits for this test case (93 grids, Cn = 0.6, ~ P_*=
0.2P), shown in Fig. 9c¢, indicate significant errors developing along the rarefaction
wave. In conclusion, it seems that for this specific application and this test case

conditions, the results obtained by this scheme are actually worse than the results

obtained by the FCT-LW.

The las! scheme tested was a combination of the Artificial Compression Method2/
with the Hybrid20 and the Lax-Wendroff schemes28. This combination method involves
two steps; in the first step the second order Lax-Wendroff scheme is hybridized with
A the nonoscillatory first order accurate method as described previously, to allow a
monotonic (i.e., nonoscillatory) transition across admissible discontinuities. In the
: second step, an artificial compression correction is applied to sharpen transitions of
discontinuities (i.e., restore the energy contained in the high frequency modes), since
the hybridized first order accurate method is too dissipative. A switch value hased”
upon flow gradients (density gradients were used herein) is utilized so that the artificial
compression and the first order monotonic schemes are activated only in the immediate
vicinity of admissible discontinuities. This combined method preserves the second order
.::: truncation error of the Lax-Wendroff scheme in smooth regions of the fiow and yet has
" the potential to vyield nonosciliatory transitions of both shocks and contact
discontinuities (due to the monotone scheme that is activated at the transition regions).
In this connection, it should be mentioned that stability considerations restrict this

e combined scheme to Courant numbers below 0.85. (Further details on this scheme are

presented in Appendix 2.)

Figure i0a shows the time evolution of pressure oscillations at an end of the tube

between the nondimensional times of 0 and 60, obtained by utilizing the LW + H + ACM




&
"‘: scheme, with a switch value of 0.0002. The expanded views between nonditnensional
e
:::: times 20 to 30, and 50 to 60 are shown in Figs. 10b, and 10c, respectively. Mo erroneaus
N wiggles or oscillations are excited at any time before or after the shock. Ninety-five
l-l“.
j:‘ percent of the shock amplitude is captured over three grid points, even after several
:1:’§ thousand time steps. The spectral analysis for this case indicates that (siinilarly to

what has been shown with the FCT-SHASTA-Phoenical scheme) the percentage of
energy in the fourth to eighth harmonics grows slightly with tirme. However, in this
case, this growth is not acconpanied by dissipation of energy in the higher (above
eighth) harmonics, but rather by a slight decrease in the percentage of energy contained
in the first to third harmonics. The time evolution of the Power Spectral Density as a
function of mode nuinber {shown in Fig. 10d) indicates that once a shock is formed, the
dacaustic energy distribution among the nodes varies little with time. These results are

in excellent agreement with the analytical solution (presented previously) for an N

T wave.

The switch value responsible for the transition froin the Lax-Wendroff to the
Hybrid + ACM combination was chosen to be 0.0002. In order to dernonstrate that the
choice of switch is not limited to a very narrow range, the test was repeated with
vaolues of 0.002 and 0.00005. The results obtained in all these tests were identical,

indicating the insensitivity of the results to variations in the switch value.

Results obtained with an initial pressure disturbance amplitude of 0.6 of the mean
pressure are indistinguishible (qualitatively) froin results obtained for the standard test
case. Results obtained at low Courant nubers (around 0.3) show increased dissipation
of the high harinonic content (a problem inherent to the basic Lax-Wendroff schere)
that result in rounding of th» shock top. Nevertheless, 95 percent of the shock is still

captured between 3 grid points.
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Q) In contrast to the results obtained with the FCT schemes, excellent results are
obtained with 93 grid points (Cp = 0.6, 4P = 0.6P), as shown in Fig. 10e. The shock
remains sharp and oscillation-free even after 11,000 time steps. Spectral analysis data
indicates that at least 25 harmonics were excited. In addition, no detectable temporal

change was observed in the percentage of energy contained in any of the harmonics.

An additional testimony to the shock capturing capability of the Lax-Wendroff,
Hybrid and Artificial Compression combination schemes is shown in Figs. 10f and 10g.
Experiments were conducted (more details are given in Part 2) in which closed tubes
filled with nitrogen at room temperature were pulsed by a piston pulser attached at one
end. The pressure oscillations in the chamber excited by the piston pulser feature a
very fast rise and decay. The nonlinear combustion instability program (Appendix [) was
modified to model the effect of fore-end pulsing. The predicted spatial evolution of
pressure waves in the first half wave period is shown in Fig. 10f. The very fast rise and
decay times of the pulse results in a very narrow steep-fronted and steep-backed wave.
The spectral analysis results obtained for this pressure wave solution (shown in Fig. 10q)
indgicntes an almost linear decay of energy as a function of frequency; a result
significantly different from spectral analysis results obtained for an N-type waveform.
The prediction of such waveforms in a sharp-nonoscillatory manner is a formidable test
of a numerical scheme. The ability of the LW+H+ACM combination scheme to
reproduce these waves with only a slight post-expansion oscillation is another indicaticn
of the excellence of this shock capturing technique for all types of wave propagatinn

problems.
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CONCLUSIONS

Several shock capturing techniques were utilized to solve the nonlinear hyperbolic

equations describing propagation of finite amplitude waves, wave-steepening, and shock

AR AR R =l ki

formation and propagation in a closed-end tube for many wave cycles. A spectral
analysis capability was incorporated in the program, enhancing the ability to examine

the dissipativz and dispersive error pattern of the candidate numerical shock capturing

B2 L

schemes.

All the "older" techniques tested (i.e., MacCormack, LLax-Wendroff, and Rubin and
Burstein) demonstrated significant diffusive and dispersive errors. The results of an
extensive study conducted with MacCormack's scheme demonstrated that: (a)
dispersive errors increase with decrease of Courant number; (b) dissipative errors
increase with increase in Courant numbers from 0.1 to 0.6 and then decrease; and (c)
both dispersive and dissipative errors increase with frequency (for the same Courant
number). These results agreed with results obtained by a linear error analysis. Except

for some insignificant differences, the results obtained for the Lax-Wendroff and Rubin

and Burstein schemes were similar.

Artificial viscosity effects were examined by combining artificial viscosity with
Hyman's predictor-corrector and Rusanov's schemes. The use of artificial viscosity was
conceived as a way to damp post-shock oscillations (erroneous energy content in the
high frequency modes). However, using artificial viscosity for several wave cycles
resulted in total dissipation of the energy contained in the high frequency modes. It has
been demonstrated (with both schemes) that the total energy loss depends on the value

of the artificial viscosity coefficient used; increasing the artificial viscosity coefficient

resulted in g faster transition to a pure sinusoidal wave (i.e., elimination of the high

frequency modes) and a faster wave amplitude decay.
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Numerical experiments with the two Flux-Corrected-Transport-SIHASTA schemes
tested demonstrated very good results (except for some aesthefic pre- or post-shock

wiggles) for the standard fest case. Nevertheless, these schemes yielded erroneous

“
s
N
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o
v
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;‘;.‘ solutions when tested for initial disturbances of high amplitudes; solutions that
fj exhibited a single or even multiple numerically generated shocks at the center of the

expansion wave.

The Hybrid scheme utilizes a first order accurate monotonic scheme in the
vicinity of admissible discontinuities and a second order scheme in the sn;\ooth portion
of the solution. Resulils obtained with this scherne indicated that for all Courant
numbers, grid sizes and initial wave amplitudes tested shocks are captured without
oscillations. Nevertheless, since the scheme is based upon a transition to a linear (first
order accurate) scheme at shock transitions, the lower harmonics contain more energy
than should be there at the expense of the high frequency content of the wave. This
energy transition resulted in (after many wave cycles) waveforms that are not fully

shocked.

Artificial compression, when combined with the Hybrid scheme, was conceived as
a way to restore the high frequency content of the wave. Results obtained by utilizing
this combination scheme for several Courant numbers, initial amplitudes and grid size
indicated that; (a) shocks are captured in a sharp, nonoscillatory manner over three
grid points, even after several thousand time steps; (b) no significant shift of energy
among modes has been observed after the process of wave steepening has been
completed; (c) energy distribution among modes corresponds very closely to the
analytical solution (for an N-wave); and (d) the solution is not very sensitive to the

valve of the switch utilized. Because of these qualities, the combination of

L aEENE A 7 A % m = xR
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Lax-Wendroff, Hybrid and Artificial compression was chosen to be incorporated in the

-
? };'# [V

nonlinear combustion instability program. Details of the numerical scheme are given in

Appendix 2,
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_‘j CHAPTER 3

N

. SHOCK WAVE PROPAGATION IN VARIABLE AREA DUCTS AND COMBUSTION CHAMBLE12S
: Mcst practical tactical rocket imotor grain configurations have variable cross-
: sectional port areas. When the rate at which the area varies becomes relatively rapid,
‘\-E or in the limit, discontinuous, the time and spatial evolution of the propagating shock
:_E:{' wave type of instability previously discussed becornes even more complex. |f a shock
> wave is traveling from a large area section to a smaller one, part of the shock wave is
‘ transmitted and part is reflected. Thus, two shock waves and correspondingly two
' contact discontinuities are created. In the opposite situation, when a shock travels
-:" fromn a small area to a larger one, the shock wave is transmitted, and an expansion fan
_ is reflected. In an actual motor both of these processes repeatedly occur, creating a
‘\' very coinplicated wave structure in the chamber. The presence of such multiple shock
n wave systerns in variable cross sec;rional motors has been confirmed experimentally

(e.g., Ref. 51).
The problem of calculating shock wave propagation phenomena in varigble area

N

chambers is cleariy a severe test of a finite difference scheme's ability to capture
several shocks and describe them in a sharp nonoscillatory manner, even after many
wave cycles. In order to evaluate the ability of Lax Wendroff + Hybrid + Artificial
: Compression technique to treat such complex problems, a simple closed duct prebiem
\ was solved initially.

The geoinetry considered is shown in Figure |1. The solution was initiated with a
;‘ continuous disturbance having an amplitude equal to 20% of the mean chamber pressure
” 6.894 MPa (1000 psi) and a waveform aiven by cos(v X/L) (most of the initial
5
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:: disturbances for solutions presented in Part | of this report used this waveform and the
“: percentage given is the zero to peak amplitude of the oscillatory waveform as a
; percentage of the mean pressure). The solution was continued for approximately 30
E complete wave cycles (nondirmensional time equals 60). The initially smooth cosine
™ wave quickly steepened into a traveling shock wave, which as previously discussed, is
:: then repeatedly reflected and transmitted as it encounters the area discontinuity and
\ the ends of the tube. Figure 12 shows the calculated waveforms and respective Power
. Spectral Densities at five different locations along the tube for the ninth and tenth
'-: wave cycles. As expected, the wave forims are quite complex and both the waveforms
and their spectra vary significantly from one location to another. Based on comparisons
with experimental results from cold gas pulse tests, the analytical solution appears to
accurately portray the physics of this complex probleml‘z.

" The waveform at the left end of this test problem is dominated by a single shock
_,, wave and a single expansion fan. One should notice the sharp, nonoscillatory captured
E shock, even after many reflections. At the |/4 point, two strong (relatively) shock
-,
* waves, two weak shocks, and two expansions are in evidence. The spectral analysis
- indicates that the second and sixth harmonics are inissing, as should be expected. The
:: waveform in the middle consists of traveling shock waves at a frequency double that of
" the ends, with half the amplitude. The main features at the 3/4 and right end points are
- four and two shock waves, respectively. One should notice the strong augmented even
harmonics at these locations. Since most of the significant acoustic gain and loss
. mechanisms in solid rocket notors are quite frequency dependent, the strong axial
variations in harmon.c content in chanbers with sharply varying cross-sectional areas
can be expected to havz a significant effect upon motor stability; an effect that is
Y completely unpredictable on the basis of linear stability analysis.
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Following the successful solution of the test problem, a solid rocket motor

. problem having the same geometry as Figure || (but with a nozzle at the right end) was

4

solved to demonstrate the capability of the developed model to solve such problems in

)

f)
AR

the presence of mean flow and combustion. Figure |3 shows the calculated pressure

5, ¢
A,

waveforms at the left end and 1/4 points of the motor. Except for the rounded tops

L

¢

(attributed to different distribution of energy among the respective harmonics caused

v’
e

by mean flow and coinplex nozzle end admittance) the waveforms are quite similar to

pen

&

Al

those obtained in the closed duct problem,
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Figs. 13a-b. Expanded views of the caiculated pressure histories
at two locations along a motor with an area discontinuity.
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CHAPTER 4
LIMITING AMPLITUDE STUDIES

From a practical standpoint, the ability to predict the limiting amplitude reached
by pressure oscillations in unstable solid rocket motors is important in assessing
whether such an instability will be severe enough to warrant design or propzilant
modificatlions to eliminate it. [For both practical and theoretical reasons it is also
important to establish whether limit cycles are unique, i.e., independent of the

characteristics of the initialing disturbance.

Even under the most carefully controlied laboralory conditions, it is almost
impossible to conduct a series of motor firings in which the only variable is cither
initial disturbance amplitude or waveform. To the author's knowledge no test series
having rhe primary purpose of establishing the effect of initial disturbance on lirniting
amplitude has ever been conducted. Results obtained from some tests which
anproximate the required conditions are not definitive, however, on balance they favor
a conclysion that limiting amplitude is independent of the initiating disturbance. |t
should be emphasized that the above refers to the limit amplitude reached if a motor is
pulsed into instability. The fact that the triggering event itself is dependent on puise

characteristics has been clearly demonstrated.

The difficulty in experimentally examining the uniqueness of limit cycles makes
the onalytical exarnination of this question all the more important. The question has
been previously addressed for both liquid#3,4%4 and solid4 6, 7 rocket molors using both
expansion and numerical techniques. Results obtained from expansion solutions indicate

that the limit cycle should be independent of the initiating disturbance. However, since

60

- -

R T T D i g S R e e

.




0

F ]

Jixs

_,,
Yoxsrd

‘Nt

e e ey

P A
'S LU P Y

':.“. |

P
e'a 2
e a

‘.
LN

. '4 /> ";"."-"’ -'.

4

G
LA,

MR s

’
’
“ .

ﬁ,"-_',:rf' '

5’_[_1‘_/_{_{'/‘

<A

¥ et

" ~ - " 7 .9 Wv;‘
. " . . i .

- apd” aft N e P e

A /g i A Pl - - V.

these methods have limits in regard to their applicability to strongly nonlinear
situations with very high amplitudes andf/or shock-like waveforms, and since not all of
the nonlinearities preseni in taclical solid rocket motors were incorporated in the

models, the conclusions must be regarded as relevant, but requiring further

substantiation.

Previous results obtained with the present‘ "exact" mode! seemed to vyield
apparently conflicting conclusions. Results obtained in Reference 4, for motors with a
particle to gas weight flow ratio of 0.36 and 2 micron particles appeared to
demonstrate that limiting amplitude is a strong function of initial disturbance
amplitude. |t was tentatively concluded that the apparently conflicting results were
due to nonlinear particle damping effects. Since this previous conclusion was based on
a limited number of results it was decided to obtain several more sets of solutions, with
and without particles. In this connection it should be mentioned that this investigation
addresses the question of limiting amplitude for linearly unstable motor/propeliani
combinations (i.e., motor/propellant combinations that under the specific motor
conditions are unstable to infinitesimal pressure oscillations). In such cases, limit
cycles result from the amplitude dependence (nonlinear behavior) of the operative

driving and damping mechanisms.

The nonlinear transient burn rate model utilized here? is a nonlinear extension of
the Denison and Baum model%43 and was discussed in Appendix I. In this connection it
should be mentioned that the pressure and velocity coupled response function (Rpc and
Ryves respectively) values specified in this report are equivalent linear response function

values (i.e., obtained by reducing the nonlinear model to the linear limit). These values

are given for comparison purposes only. In the program, the instantaneous local burn

rate is evaluated utilizing the nonlinear transient burn rate model.
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The series of results shown in Fig. 14 are for ¢ cylindricaily perforated motor 59.7

cm (23.5 in) long with a port area of 21.484 cm?2 (3.33 in2), a throat area of 2.8322 cm?
(.439 in2) and a chamber pressure of 13.19 MPa (1913 psi). These calculations were
performed for a propellant without particles, and with a linear pressure coupled
responsc function of 5.35 (no velocity coupling). The solutions were initiated by
perturbing the steady state with fundamental mode disturbances of varying amplitudes.
In each case the same limit cycle (amplitude and waveform) was reached. Additional
solutions for the same motor and operating conditions were obtained with several other
pressure coupled response functions. All of the solutions for a given response function
reached the same limit cycle condition (i.e., the same amplitude and waveform) but

each response function produced a somewhat different limiting amplitude.

Several other series of calculations were then performed with varying sizes and
amounts of particles to re-examine the conclusion reached in Reference 4. The first
series of calculations (with the same motor geomeitry used in the results shown in Fig.
[4) was conducted with 2 micron aluminum oxide particles and 15% particle 1o gas
weight flow ratio. The results shown in Fig. |5 were enlightening. The computed limit
cycle amplitudes were the same (30.4%‘ of mean pressure, peak to peak) even though the
initial disturbance was 40% in onc case and 2% in the other. Calculations with

intermediate initial disturbance also reached 1he same limit cycle condition .

This last series of results raised serious questions concerning the validity of the
conclusion reached in Reference 4. In order to settle the apparent conflict, the earlier
results (reported in Ref. 4) were reproduced. This time, however, the solutions were
carried out for twice os many wave cycles. Doing so immmediately provided the answer
to this seeming paradox. The solutions presented in Fig. 16 show that at a
nondimensional time of 70 {when the earlier solutions were terminated) the decay rate

was quite small, but not zero. ft was falsely assumed ithat continuing the
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solutions would not significantly alter the iimit cycie amplitudes.,  The present

calculations show that except for initial perturbations close 1o 5%, the wave is ecither
still growing or decaying at T=150. All of the solutions were getting closer and closer 1o
the same limiting amplitude, but had yet to reach it. Figures 16 show the present
results obtained with 2 micron, 36% particle 1o gas weight flow ratio and initial
disturbance amplitudes of 40% and 2% of the mean pressure. Given the previously
presented results for 15% 2 micron particles, it is expected that the solutions will
approach the same limiting amplitude. Furthermore, Figs. [6a-b demonstrate that
when a particular motor propeliant combination is near neutral stability (i.c., very small

growth or decay rate), a very long time is needed to reach a limit cycle condition.

To further demonstrate the effect of relative stability on the time needed to
reach a limit cycle condition, calculations were made for the same motor and
propellant (36%, 2 micron particles), but with oﬁ increased pressure coupled response
function. The increased combustion driving unbalanced the gains and losses, and as scen
in Figs. 17a-b, resulted in the relatively rapid establishment of a limit cycle with an
ampti.ide of 29.6% of the mean pressure. Here again, additional soiutions
demonsirated that the limit cycle condition (i.e., amplitude and waveform) was

independent of initial disturbance amplitude.

An important application of nonlinear instability analyses is the predict on of
motor response to pulse type disturbances. The results of twe solutions that tesi the
ability of the LW+H+ACM to trect such problems are discussed. In both cases, the
initial pressure disturb.nce waveform was taken 1o be of the form siné (n X/L)
producing a centered synmmetric waveforrn with an amplitude equai to 0.4 of the mecan
pressure. The difference between the two cases was the initial velocity at t=0. In one

case, the nondimensional v:locity was taken to be : P/, whiie in the second case, the
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N
"l
.':j velocity was taken to be zero. The first case represents a traveling pulse (actually

-f:j setting Av = Ap/y only produces a pure right traveling wave in the linear limit as
o,

, Av  approaches zero). The second case corresponds to a standing pulse. The pulse
. . : :

:4 propagates as the sum of equal left and right traveling waves, each having half the
~

';- initial amplitude.

s

N The calculated pressure histories at the head end of the motor for each of these
- disturbances are shown in Fig. |8 (traveling) and Fig. 19 (standing). The dramatic
~ difference between the results demonstrates the importance of specifying the velocity
disturbance associated with a pressure pulse. The traveling pulse is immediately
:'.:: transformed into steep-fronted, shock-type waveform and decays until it reaches the
, same limit cycle condition as the solutions initiated with first harmonic sinusoidal
- . disturbances (21.73 percent of the mean pressure). Spectral analysis of this solution
- -

i‘_'. indicated that at early times a large percentage of the energy of the traveling puise
‘ was contained in the fundamental mode, but a significant higher harmonic content is
L~

- also evident,

‘.\-

J"-

'.\

ny
. The pressure history of the standing pulse disturbance is shown in Fig. 19. The
time variation of the waveform is quite complex in this case. The spectral analysis
::T: results shown in Figures 20a to 20c help to clarify what is happening. At early times, a

_. symmetric standing pulse centered in the motor excited essentially only even harmonics
-_‘:-: (Figure 20a), with the 2nd harmonic dominating. The fundamental and odd harmonics
::: contained an insignificant amount of energy at this time. Since only the fundamental is

L]

. unstable for this motor, the even harmonics decay with time, while the fundamental
- begins to grow. In the nondimensional time interval of 20 to 40 the waveform becomes
\ quite complex as it transitions from a steep 2nd harmonic dominated wave to an almost
. d

< pure sinusoidal wave at the fundamental frequency. At a later time this solution was
A"

“
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continued out to a nondimensional tirme of 180. The waveforin continued to decay out
to about nondiinensional time of 100. At this time, the amplitude of the wave was only

[.6% of the mean pressure (compared to 40% initially) and the wave was essentially a

pure fundarnental sine wave. After t=100, the wave started to grow again. As the wave

grew and steepened, higher harmonic content again began to appear as a result of
energy transfer from the fundarmental to the higher harinonics and the solution reached
the same limit cycle achieved with the other initial perturbations. [Based on these
results, it has been tentatively concluded that the limit cycle condition (amplitude and

waveform) is independent of initial disturbance characteristics.

Figures 2la and 21b show the expanded views of the tirme evolution of the pressure
oscillations for the standing pulse test case between the nondimensional times of zero
and ten. Figure 10a was computed utilizing the LW+H+ACM method, while Fig. 2ib
shows the result obtained using the Rubin and Burstein Scheme. The erroneous
developinent of higher modes when utilizing the Rubin and Burstein Scheine is evident
after the third wave cycle. Spectral analysis of the Rubin and Burstein solution
indicates that the fourth and sixth harimonics contain erroneously high energy at the
nondimensicnal time period of 7.5 to |5 (as shown in Figs. 22a and 22b). Even in this
case, in which all modes except the fundainental are stable, the effect of such
erroneous higher mode content is not nerely cosinetic. When perturbed with a first
mode disturbance, the Rubin and Burstein results reached a limiting amplitude which is
approximately 50% higher than the limiting amplitude obtained with the LW+ +ACM
scheme. Such a difference can be critical when one considers the vibration levels that
can be tolerated bvw  guidance and control systeins. These results conclusively
dernonstrate the superiority of the LW+:H+ACM scheme over the generalized Lax-

Wendroff type scherres for the present class of problems,
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Figs. 21 a-b. Expanded views of normalized pressure oscillations at the
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N
oo VELOCITY COUPLING STUDIES

"~ INTRODUCTION

>,
3

"'\

o

AN A survey of past attempts to model or predict the effects of velocity coupling on
:: the stability of solid rocket motors leads one to the conclusion, supported by the results
.:\.

:‘_:fj of a recent JANNAF workshop on velocity coupling#6, that very little is known about
N

»

velocity coupling at this time. All existing models appear to have significant

‘:} deficiencies. Price's original velocity coupling model47 is purely empirical. Other
~r investigators sought to modify existing combustion models by introducing an additional
xl

-5 source of heat transfer to the propellant surface. For example, in Refs. 48 and 49, a

N heat transfer term based on an empirical function of velocity was utilized, while in
Refs. 50 to 52, additional heat transfer was included on the basis of modifications to
steady state turbulent boundary layer theories and/or erosive burning rate models. All

of these models ignore soine of the fundamental physics of the problem. Turbulent

b
‘.‘. . . 3 . -
boundary layers in the usual sense are not typically realized in solid rocket motor
s

.( . . - . 3

. cha nbers.33 While some of the existing velocity coupling models properly reduce to
S stead state erosive burning models as the limit of zero frequency is approached, none
= of thern properly treat acoustic boundary layer effects that become significant in the
& . . 3 eae .
” normal longitudinal frequency ronges“‘ (say 200 to 1000Hz). In addition, acoustic
®

: boundary layer transition and acoustic turbulence interactions may also be important
™ under certcin conditions as may the interaction of an unsteady boundary laver with the
oy

[

= propellant surface structure.

"J

N Due to the deficiencies of currently existing models, no velocity coupling model
\-

L was selected for incorporation into the overall nonlinear stability program at this time.
v}

- 74

L]

e -, '~,:'. ol '-:'- \;\'.- e, AN - - .,*v .\ e N T T PR ATAA VR LT 5




L I R e Y - - SR A LR LA L P e -

Instead, calculations were performed utilizing several different ad hoc functions of

velocily to directly augment either the heat transfer to the propellant surface, or the

cw

fransient burning rate itself.

e

The primary purpose of this velocity coupling study was to demonstrate the

«

potential usefulness of the present analytical framework in assessing the validity of

improved velocity coupling models as they are developed. The initial calculations to be

MONPGR Ay

e presented herein are for constant cross-sectional area, cylindrically perforated motors.
A The basic configuration is the same as that used in the previous study.4 The reasons for
- sclecting a cvlindrical configuration to start with were: 1) It is the simplest possible
motor configuration; 2) A large body of pressure coupled only solutions was available
< for these configurations; 3) Linear velocity coupling theory? yields no effect of
velocity coupling for such configurations, thus, any velocity coupling effects observed

would be due to nonlinear effects; and 4) although cylindrical motors often show little

‘.I'.'-\‘. R

evidence of velocity coupling, there are many recorded instances where severe

triggered instabilities with large mean pressure shiffs have been observed in such

molor>.|‘3v 42

i4
e

All of the velocity coupling modeis developed to date have retained Denison and

I D

Raum's assumption of quasi-steady gas phase behavior in the combustion zone above the
propeliant surface. Each of the models then makes certain assumptions and hypotheses
that lead to o velocity dependent term that enhances the heat transfer from the
cornbustion zone to the propeliant surface. In terms of the combustion model which is
currently utilized in the preseni nonlinear analysis, this corresponds to incorporation of

an additional lerm in the surface energy balance.

{90

ot

P
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HEAT TRANSFER AUGMENTATION MODEL

Symbolically, this equation may be written as:

(5)
3T e o7
g_a—;_ -Kgax+ *oerS
heat traonsfer heat transfer total energy
to solid pro- from gas phase released at
pellont to surfoce surfoce
The term Kg % + has to be modified to incorporate the effect of acoustic

velocity fluctuations. In the absence of a fundamental pnysical model, a number of
functional forms were considered. Since a functional form of the following type has

sometimes been successful in rationalizing observed events it was considered first.

=- ful <u ]

where e1 L] M >“§J 6)
r -
210 fuf <u

and 32 "'_] lul >U:::

Here u is the total velocity, u = U + u'; U is the mean velocity and u' the local acoustic
velocity fluctuation. The term vy represents a threshold velocity which in reality may,
or may not, exist. Justification for this functional form may be found in sc:veral

references.4/,48

When u' >> u v ad ut = 0, Eq. (6) can be approximated by

>T -
[Kg ;;+]vc” v (1)
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According to linear analysis, a term such as shown in Eq. (6) can only be added to the
heat transfer. However, in nonlinear analysis a velocity coupled heat transfer term can
be incorporated on an additive or multiplicative basis. [t was decided to insert a term

on a multiplicative basis. The following functional form was adoptec:

R
oT } -[ a1 } ‘ 1+-YC v F
K = =z | K. =— (u (8)
[ g 3xl+] pctvce g axl+jpc L Rpc ve

Where F(u) is given by Egs. (6) or (7), Rpc is the pressure coupled response function and

Ryc is the velocity coupled response function.

For small amplitude oscillations, u'<<u and ut = 0, the right hand side of Eq. (6) reduces
to u'. Thus, using the combustion model evaluated in the linear limit,% it can be shown

that for Ryc to be equal to Rpe, 5 ve in Eq. (8) must satisfy

¢ (n-n.)
2n(1-H) + cz — (9)
e" =

In the small amplitude linear limit, Eq. (8) combined with the present combustion
model, reduces to the velocity coupled model used by Culick,48 and Levine and
Culick.b¢ Equations (8) and (9), together with either (é) or (7), were termed the heat

transfer augmentatior rnodel.

The calculations shown in Fig. 23 are for the same motor used in the Ref. 9
studies. With a linear pressure coupled response function of 3.3 and no velocity

coupling, this rotor propellant combination reached a limit amplitude of 21.73% of

inean pressure (peak to peak). With the heat transfer augmentation model, Eq. (6),

77
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ut = 0 and a velocity coupled responsce function of 3.3, the calculaled waveform (Fig.
23a) is almost the same as with pressure coupling alane, At the {imit cycle condition,
the lower envelope of the oscillations is almost the same. However, the zer to peak
amplitude was increased by 1.2%. Increasing the velocity coupled response function to
19.8% gave the results shown in Fig. 23b. Here again, the lower envelope of the limit
cycle remained at the same level, while the zero 1o peak amplitude was increased by
7.3%. Neither of these two cases deimonstrated Q measureable mean pressure shift even

after 75 wave cycles.

In order to further explore the reasons for this behavior, additional solutions have
been obtained with extremely high values of Rys. At a value of Ryc=40, strong
nonlinear effects and a measureable dc shift were produced. At Ry=66 (Fig. 23c), a

significant dc pressure shift is observed, as well as a modulated limit cycle amplitude.

BURN RATE AUGMENTATION MODEL

In order to explore the ineffectiveness of the heat transfer augmentation model, a
second ad hoc velocity coupling formulation was inserted into the nonlinear instabifity
cnalysis, as follows:

Wpceve = Wpe [ 1+ Rye Flv)] (10
W is the instantancous propellant mass turning rate (W=W+W|), and Wpc is the
instantaneous mass burning rate computed trom the existing pressure coupled model.
With F (u) giver by Eq. (6), Eq. (10) also reduces, in the low amplitude limii, ‘o the
linear velocity coupling model used in the past. The key difference between Fq. (10)
and Eg. (8) is that .ne velocity coupling effect built into Eq. (10} directly modifies the
propellant burning ralce rather than affecting it indirectly through a model that was
developed for pressure coupled response function prediction. Fquation (10), termed the

burn rate augmentation model, is heuristic and is not meant to imply a particular
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physical velocity coupling mechanisrn.  However, it was felt that solutions obtained

using it would be instructive.

A secries of calculations was then carried out with velocity coupling added on the
basis of Eq. (10) with F(u) = Iu'l, Ryc = 5 and Ry = 2.18. The results obtained with
pressure coupling only indicate that this motor/propellant combination is stabie, even to

high amplitude disturbances, as shown in Fig. 24a. These results are confirmed by linear

theory.35 However, with both pressure and velocity coupling the results arc entirely

different. With an initial disturbance amplitude of 2% of the mean pressure (Fig. 24b)
the disturbance amplitude grows initially, but the overall result indicates a stable
moior. With an initial disturbance amplitude of 5% of the mean pressure (Fig. 24¢),
the oscillations grow to an amplitude of about 25% (peak to peak), appear to start
damping, but then grow again. A mean pressure shift of about 12% is observed. With a
40% initial disturcance amplitude (Fig. 24d) the oscillation amplitude decays until it
reaches an ampiitude of about 20%,. maintains that level for a while and then begins to

grow again. The mean pressure shift observed is about the same as that resulting from

a 5% disturbance.

This last series of calculations demornstrates a number of characterisrics of
obscrved nontincar instabilities; characteristics that the model with pressure coupling
atone nas not been :hie to simulate. These characteristics are triggering (Fig. 24b
comp-red 13 24c and 24d), waves that grow and then decay (Fig. 24c), mean pressure
shifts that s <ar to be relatively independent of inltial amplitude (Fig. 24c, 24-), and a
iack of 4 stable limi: cycle behavior, i.e., modulating armplitude (Figs. 24¢, 24d). To the

author's best mowle e, this is the Tirst time such solutions have been obtained.

Based on these rese is, it has been concluded that the relative ineffectiveness of

heat transfer gugmentaiion model is a result of the response function versus
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frequency characteristics irplied by Denison and Baum type models. With such quasi-

steady combustion models, the gas phase heat transfer (whether fron pressure or
velocity coupled effects) produces a response function versus frequency curve that has
a single narrow peak. Nigure 25 depicts the response function versus frequency curve
for the parameters used in the calculations shown in Figs. 23, 24, 26, 27, and 28 (A =
5.975, 8 = .53). At the nondimensional frequency implied by the propellant burn rate
pararmeters and motor operating conditions used in the calculations (2 = 3.78) the linear
pressure coupled response function was equal to 3.3. At the 2nd harmonic frequency @
= 7.56, the linear pressure coupled response function is only 0.3, while at the higher
harinonics, it is even lower. With the heat transfer augimentation model the velocity
cbuplcd response function is, to first order, proportional to the pressure coupled
response (Note: for the problems being considered, the waves are primarily traveling
rather than standing, and the velocity is approximately in phase with the pressure over
half the cycle and 1800 out of phase with the pressure over the other half of the cycle).
Thus, for the problem that was solved, the velocity coupled response for the 2nd
harinonic was about q' factor of 10 lower than the response function at the fundamental

rnode.

With the mass transfer augmentation model, Eq. (10), the velocity coupling
response is indepeindent of the combustion model, and to first order is independent of
frequency. Thus, when a velocity coupled response function of 5 was specified, this was
the approximate value at all frequencies. Given the nature of Fig. 25, it would require
a value of Ry./Rpe = 16.6 (which implies Ry = 55 for the first harmonic) in order for

the heat transfer auginentation inodel to produce a similar value of Ryec = 5 for the

second harmonic.

The above discission ¢ ppears to be able to explain the wide disparity between the

resalts obtained with the tvo ad hoc models. Furthermore, it implies that a realistic
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velocity coupling modei will have to be capable of providing strong driving at the higher

s

harmonic frequencies.

AT

& VP A |

G In order to examine the effect of F(u) on the computed results, lu'l was replaced
E_’E by Egq. (6), and the same series of calculations was repeated. Figure 26 shows the
N calculated results for an initial disturbance amplitude of 20% of the mean pressure. In
: this case the motor appears to be marginally stable. To examine the behavior induced
by Eq. (6) wunder unstable conditions, the calculations were repeated with a velocity
- coupled response funciion (Rye) equal to 3. Even with such a large velocity coupled
7 response, a stable solution was obtained to an initial disturbance amplitude of 2% (Fig.

27q). Increasing the initial disturbance amplitude to 5% (Fig. 27b), however, produced a

large amplitude highly modulated instability, with a significant mean pressure shift.

The sensitivity of the results to changes in the functional form of the velocity
perturbation utilized demonstraies that the present nonlinear stability analysis can be
useful in assessing the validity of more realistic velocity coupling models, as they are

developed.

To further our understanding of the velocity coupling probiem in particular, and
nonlinear instabitity in general, the solutions presented in Figs. 24b and 24d were
examined in deroil;56 not only at the head and aft ends but also at the one quarter, one
half and three quarter points. Analysis of the resuits demonstrated a very complex
behavior that is, undoubtedly, a result of many muiually interacting nonlinear flnd
dynamics and combustion phenomena. Some of the complexity of the problem is
illustrated in Figs. 28 nd 29, which present expanded views of the perturbed pressure,
burning rate, and velocit ¢ (actually F(u) = | ' |) waveforms at the head end, /4, |/2,

and 3/4 points and ~ft und, for the cases previously presented in Figs 24b
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and  24d,  respectively, IThe waveforins are shown in the interval around a

X

LA

nondimensional tirne of 30 (i.e., after about 15 wave cycles).

>,

n e I 1
)

If the oscillations were standing waves, the velocity oscillations would be 900 out

hy
.

of phase with the pressure oscillations. On the other hand, if the oscillations were

e I

traveling waves, the pressure and velocity would be in phase for half of a wave cycle,

o

3: and 1800 out of phase for the other half of the cycle (Figs. 23 and 29 show | u' | rather
F:: than o', thus lu'l should be in phase with p' for the whole cycle). The phase relationshin
E between p' and in' is a very coiplex function of the frequency, amplitude and phase of
E'j the pressure and velocity waves and the characteristics of the propellant. From a
:::: stability standpoint, the phase relationship between p' and m' is critical, since the
'f‘.-' combustion driving is produced by the component of ' that is in phase with p'. The

figures were designed only to display the phase relationship; between the oscillations;

the amplitude scales for each curve are different and are not indicated.

.“7"\.«"- A
. T AT |
Y ST P

'

From Fig. 28 (stable) and Fig. 29 (unstable), it can be seen that the waves are

RN
e

2 W

pritnarily, but not conpletely, travelling waves, since the velocity is close to being in

phase with the pressure. This is true even though the calculations were initiated with a

Yoy
a 2 0

PACAE o8

standing wave disturbance, and for the stable case, even though the waves are not

N

h IS

steep-fronted and are of relatively low amplitude. In addition to the differences in
waveforims, there are soine other significant differences between the two sets of
results. At the head and aft ends, where the velocity oscillations ar> zero or very

stnall, respec ively, the phase relationship between m' and p' is still quite different for

the two cases. In the stable case (Figs. 28a and c), the burn rate leads the pressure by
avout 519, while in the unstable case (Figs. 29a and c), the burn rate lags the pressure,
but only by 80, At these points (X = 0, X = L) the difference in phase between the two

cases can onlv be attribute{ to the difference in the pressure waveform. At the (/4 |
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point, the results are somewhat more complicated. For the unstable case (Fig. 29b), the
amplitude of the pressure wave is lower when it is traveling towards the head end than
after it has been reflected of f the head end and is traveling back towards the nozzle.
The behavior of the burning rate and velocity waveforms for this case are just the
opposite, i.e., they are lower after reflection than before it. For the stable case (Fig.
28h), both the pressure and burning rate are 'ower after reflection, while the velocity is
higher after reflection than before it. In addition to the differences in the behavior of
the wave amplitudes, the phase relationships in the two cases are also different. In the
unstable case (Fig. 29b), the burning rate is almost exactly in phase with pressure over
the whole wave cycle, while in the stable case (Fig. 28b), the burning rate leads the
pressure by about 200 when the wave is traveling towards the head end, and lags the
pressure by about 209 when the wave is traveling towards the nozzle. In the unstable
case, the velocity leads the pressure by about 100 when the wave is traveling to the
left, and lags the pressure by about 100 when it is traveling to the right. In the stable
case, the velocity lead/lag is the same with regord‘ to the direction of travel, but the

nagnitude of the lead or lag is about double (about 200).

At the center of the motor (Figs. 28c and 29¢), the wave amplitudes are almost
the same, regardless of the direction of travel, and the phase differences essentially
disappear. In the center, the pressure, velocity, and burning rate are all in phase, in
both cases. At the 3/4 point, the amplitude and phase behavior for the two cases is

sitnilar to that at the /4 point, but in an anti-symmetric fashion in regard to direction

nf wave travel.

st fromn examining these two cases at one point in tirne, it becoines apparent
how coinple < nonline ar wave propagation can become. The waves are, in general, some

o abination of traveling and standing waves. The frequency content of the waves and
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the phase relationships of the pressure, velocity, and the burning rate vary significantly
from one point in the motor to another, and for the same motor and location, vary as a
function of the initial disturbance amplitude. In addition, the phase angles between m',
u', and p' vary intra-cycle, i.e., from one portion of the wave cycle to another, and also
vary in tirne from one cycle to another. This nonstationary behavior of the phase angle
is the most likely cause of the modulated limit cycle amplitudes that are observed in
the nonlinear velocity coupling solutions. Results such as those presented above clearly
demonstrate why attempts to solve nonlinear instability problems using techniques and

understanding based on linear analyses cannot be expected to be uniformly successful.

THRESHOLD EFFECTS

All of the velocity coupling results previously presented herein were for zero
threshold velocity. Since threshold ef-fects have been observed,>’ a brief attempt was
made to examine their effect within the context of the present ad hoc model. The
rexults presented in Fig. 30 were obtained for the same motor used in the other cases
pressnted herein. The burn rate augmentation model was utilized with F(u)=l u' | -uy.
With the pressure and the velocity coupling values used in the Fig. 24 calculation (Rpe =
2.18, Ry = 5) an unstable resuit could not be achieved with a threshold velocity equal to
0.02 (ut is normalized by the steady state gas sound speed, so ut = 0 .02 corresponds to
about 60 ft/sec or 18.29 m/sec). Ry was then increased to 13 and the calculations were
repeated. With uy = .02 and p' = 0.02P, a stable result was obtcined again ({Fig.
30a). However, wher “p ' was increased to 0.08P, a highly nonlinear instability was
produced (Fig. 30b). The threshold velocity was then increased to 0.05. With the
increased threshold velocity an unstable result could not be achieved, even with initial

disturbance perturbations as large as 40% of the mean pressure (Fig. 31).
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Although threshold effects, if they exist, are not expected to be a function of only
mnean and/or fluctuating velocity, these results indicate that, as expected, threshoid
effects act to increase the magnitude of the velocity coupled response function
required to trigger an instability., The results also imply that propellants with high
thresholds will be difficult or impossible to trigger. Threshold effects, variations in
Ryc as a function of frequency, and nonlinear fluidynamic effects, all interact to

deter:nine the nonlinear stability of a given motor propellant combination.

CONCLUSIONS

The complexity of nonlinear instability in solid propellant rocket motors and the
large number of mutually interacting phvssical phenomena which control it, makes it
very difficult to form generally valid quantitative conclusions, even from a relatively

large number of numnerical or experimentul results.

The following conclusions can, however, be drawn from the large number of

nonlinear instabtlity solutions obtained during the present investigation:

I Based on many more solutions than had been available in the past, it is concluded
that pressure oscillations will reach a limiting amplitude that is independent of the
characteristics (waveform and amplitude) of the initiating disturbance. This conclusion
appears to hold for urinetallized as well as metallized solid propellants, but cannot as

vet be generalized to include cases when strong nonlinear velocity coupling is present

(see number S below).

2. Velocity coupling models based on nodifications to standard quasi-steady gas

phase, hornogenenus solid phase assuraptions are nct capable of producing strong

nonlinear effects at realistic values of velocity coupled response function.




3. A realistic velocity coupling model must be capable of predicting high combustion
response over a wide frequency range for propellants that are known to be able to
produce strong nonlinear velocity coupling effects,

4. Nonlinear oscillations in solid rocket motors are very complex. The oscillations
are, in general, a combination of traveling and standing waves, with the traveling
component being dominant, even for non steep-fronted waves at relatively low

anplitudes,

5. The phase angles between pressure, velocity and burning rate oscillations vary
from one location in the motor to another, and are non-stationary in time. The non-
stationary behavior of the phase angles is the most likely cause of the modulated limit
cycle amplitudes observed in the solutions and in motors.

6. The predicted results were quite sensitive to changes in both the magnitude of the
velocity coupled response function utilized and its functional dependence. Thus, it is
contluded that the present comprehensive nonlinear stability analysis will prove to be
vaiuable in assessing the validity of improved velocity coupling models as they are

developed.
7. Solutions obtained using a threshold velocity imply that propellants with high

acoustic velocity thresholds will be difficult or impossible to trigger unless thzy also

have a very high level of velocity coupled response.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

A new combustion instability model that describes the combustion and flowfield
inside a solid rocket motor has been developed. The capability of this model to predict
. the multiple shock, triggered type of instability that occurs in modern variable cross-
sectional area reduced/minimum smoke solid motors was demonstrated. It has been
shown that the model can predict triggering, DC pressure shifts, and modulated
amplitude lirnit cycles; phenomena that are all observed in actual solid rocket motor
instability data. The model also predicts waveforms that are in good qualitative

agreainent with those observed during motor firings.

A finite difference integration method based on a combination of the Lax-
‘Nendroff, Hybrid and Artificial Compression sc-:hemes was found to be superior to other
schemes tested. This scheme is capable of describing a shock as a sharp discontinuity
without generating artificial pre- or post-shock oscillations. The method does not rely
“ on the use of an artificial viscosity, and is capable of preserving the high frequency
. content of the waveforims. This combination technique can also treat the reflection of

shocks from boundaries and has small diffusive and dispersive errors even after inany

wave cvcles.
Pressure oscillations were shown to reach a limiting amplitude that is independent

' of the chcracteristics of the initiating disturbance. This conclusion appears to hold for

”

vninetallized as well as inetallized solid propellants, but cannot as yet be generalized to

include cases when strong nonlinear velocity coupling is present,
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Velocity coupling models based on quasisteady gas phase, hormogeneous solid phase
assuinptions are not capable of producing strong nonlinear effects at realistic values of
velocity coupled response function. A realistic velocity coupling model must be capable
of predicting high combustion response over a wide frequency range for propellants that
are known fo be able to produce strong nonlinear velocity coupling effects in solid

rocket motors.

Nonlinear oscillations in solid rocket motors are very complex. The oscillations
are, in general, a combination of traveling and standing waves, with the traveling
component being dominant, even for non-steep-fronted waves at relatively low
aviplitudes. The phase angles between pressure, velocity and burning rate oscillations
vary from one location in the motor to another, and are non-stationary in time. The
non-stationary behavior of the phase angles is the most likely cause of the modulated

[imit cycle amplitudes observed in the solutions and in motors.

The predicted results were quite sensitive to changes in both the magnitude of the
veissity coupled response function utilized and its functiona!l dependence. Thus, it is
concluded that the present comprehensive nonlinear stability analysis will prove to be
valuable in assessing the validity of improved velocity coupling models, as they are

deveioped.
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NOMENCLATURE

Courant number

specific heat of gas at constant pressure
vector of the conserved quantities
defined in Egs. (8) or (7)

Flux vector

thermal conductivity

mass flux frain burning surface

pressure

net heat of reaction for processes at burning surface
linear burn rate

termperature

time

velocity

threshold velocity

mass burning rate, per unit length, per unit cross sectional area
axial distance

gas only isentropic exponent

defined in Eq. 9

thermal diffusivity

density

nondimensional frequency

artifical viscosity coefficient
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Subscripts
g -

pc -

vC -

Superscripts

gas
pressure coupled
at the burning surface

velocity coupled

denotes a perturbation

denotes steady state value
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2. ZQUATIONS OF MOTION

2.1 Discussion of the Mathematical Model

The longitudinal instability problem in solid rocket motors contains so
many complex, interacting, phenomena that even witk 8 numerical approach cer-
tain ldealizations are required in order to formulate a reasconable mathematical

model. In the present analysis the flow in a metal loaded solid propellant motor

m;.’ Pw S ol -'- \r\r\' &S Y ;

Is calculated from the unsteady, inviscid, two-phase equations of motion, This

T
« T

8 section is devoted to the enumeration, and discussion, of the assumptions and

¢ e ‘ o

: simplifications which have been utilized in the process of formulating and solving
these equations.

oy

-
S

The gas within the motor has been assumed to be 'Jeal, nonreacting,

and irviscid: with constant specific heats, constant Pra- .. iumber, etc. It has
also been assumed that the flow in the motor is one-dimensional, the time deri-
vative of the cross-sectional area can be neglected, and the particles are spheres

whick have uniform internal temperature and do not collide with each other,

The gas and particles coming from the burning surface are assumed to
enter the mean flow normal to the burning surface, &t the local transient flame
temperature, The e.ffects associated with propellant surfaces inclined to the
direction of the one-dimensional mean flow, and nonisentropic flame temperature

varic:inns, are properiy accounted for, '

Most solid rocket combustion chambers do not have rapid variations in
cross-sectiona! area, hence, a one dimensional analysis should provide & reeson-

able »pproximation to the flow. Rapid, or discontinuous, area variations may be 4

encountered at grain ends when the propellant is not flush, and in the relatively
chort nozzles which characterize most solid rocket motors. Rapid area variaticns

are zllowes in the present model, even when the flow in their immediate vicinity

ic besically two dimensional, It is hoped that by doing so the essence, if nct

the exact rnature, of their effect on motor stability can be demonstrated. The
geometrical doscription of the motor has been separated into two parts. The area
and perimeter variation in the chamber is assumed to be arbitrary (tabular descrip-
tion), ancd may include ead, partial length, and segmented (with gaps) grains,

The nozzle is assumed t¢ be composed of arcs of circles and straight line segments

as described in Section 2.2.
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It is widely known that the majority of the metal oxide particles are gen-

.,
“~

erated by combustion of metal droplets in the mean flow, not at the propellant sur-
face. The liquid metal pools, agglomerates, partially oxidizes, and, in some
cases, ignites, before lecaving the surface. As the relatively large metal agglo-
merates (0 ~100u4) burn they tend to produce oxide particles in two size ranges( > ,
so called smoke particles (< 2u), and larger particles (~8-10u), which represent
the residual cores of the initial droplets. If the residence time of the droplets in
the chamber is of sufficient duration the droplets will completely oxidize before

passing out the nozzle,

The residence time of the droplets, however, varies over a wide range,
as a function of position in the chamber. Thus, it may be expected that the par-
ticle size distribution and chemical makeup will also vary considerably from one
cnd to the other. The possibility that the aforementioned droplet combustion
phenomena may signif:cantly affect the stability of a motor is being increasingly
recognized. However, adequate theoretical models of these complex processes
have yet to be developed. Quantitative data, which could be used to evaluate
such models, is also relatively non-existent.

When :atisfa “tory analytical models of metal combustion in the chamber
become avallabla, it +1l] be worthwhile to attempt to incorporate them into the pre-
sent instabillty model  In the meantime, it has been assumed the metal is complcte-
ly oxidized at the burn ing surface. The resulting inert particles are assumed to be

Alvided into discrete size groups; the weight fraction of each group being invariant
with I»cation,

All particles of a given size, at a specific location, are assumed to have
the same velocity and temperature. The adequacy and consequences of this as-
sumption ure discussed In Reference 1., One of the consequences of this assump-
tion {s that the entering particles are forced to instantaneously exchange heat and
momentur with the main ctream in order to acquire the local velocity and tempera-
tur>, As liscussed in Reference 1, the required momentum and encrgy exchange *
con e portulated to occur strictly amongst the particles themselves, through a
collisional process; or, the interaction may be assumed to occur directly between
the particles and gas, The equations of motlon are actually somewhat different,

Jepen-ing on wh'ch of the assumptions is invoked, It was suspected that, since
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the particle-gas equilibration time tends to be quite small in motors, the choice

Vs

NI

made little difference. This suspicion was confirmed by solving the equations for

both cases. The equations presented in the following section assume the entering

.

.";: particles interact directly 'with the gas,

'-F.

:_"'_ The steady state burn rate is assumed to be given by an empirical P? law

s

= rrodified for the effect of erosivity, The assumptions and details of the nonlincar

o~ model used to characterize the transient burning rate of the propellant arce presentoed

_':\ in Sectio:n 5.

L

o The present model should allow for a realistic assessment of the effcct of
-

nonlinearities on longitudinal motor stability, Once the basic validity of the model
has been verified, and should it prove warranted,the modcl may be enhanced by the

relaxation of one or more of the current assumptions.

Laustions of Motion

[N
-
[

Tho equations of motion, us presented, reflect the model described in the
previous section, /#ctually, two forms of the equations are given: the conservative
form and the corresponding non-conservative form (also called the primitive forn).
Currently, the computer program solves the conservative form of the gus ~quations,
and the non-conservative form of the particle equations. The rational behind this

choirn is discussed in Section 6.1.

Corns zative Equations

Continuity

z _.* l 5 *U*A*)
Gas: 7 T —(‘-L,* = ) r {(2-1)

3t A o4

A(o* ) Ax u* Ax)

p. 1 D.n
‘ i i’ .

Particles: el — Si;u* (2-2)
wher. asterisxs donnt simensional guantities, * and :r*; are the gas and i th par-

ticie groue dencsities, resnectively, Ju* ani u; are respeétwoly, the gas and i th
perticle nroup velocities, U * is the 1ocal chember cross-sectional areca, w* is the

mass fiux of propellant aase - ~nterin; the chanber per unit length, per unit cross-
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sectional area, and _31 is the mass fraction of the i th particle group in the mass
leaving the surface (mass of i th particle group divided by mass of gas). The

quantity t* is time, while x* is the axial coordinate measured along the center-
line of the motor.

Momentum
. 3{(g*u*) 1 3 2 . P* dAx¥
Gas: T e v {‘P*”*u* ’A*] = A oaee *
N (2-3)
ur w4 Z  |F* 48 wr(u* -ux)
1 i=1 it P P
I
alc* u*) A(p* u*¥A¥%)
Particles: P P + L i = -T* +8 w* u* (2-4)
artreles: Atk A*  Jx* N P “

i i

where the term F; represents the effect of momentum transfer between the i th
particle group and gas, P* {s pressure, .nd u’; and u* represent the tangential
i -

velocity components of the gas and i th particle group‘,’i” respectively, as they

leave the buming surface (see Figure 3-2). It is assumed that u* and u* are

s a)
I
equal. N is equal t» the number of particle groups, 51”
Energy
~% *
A — *2 1 Y C %d
~. .. RS [RURTa o R PO L2 ] sk (P ey ax | =
Gas: 4t*]" (y T+ )J o 3X*[u w5 T*+= )A ]
1 A(u*P*p%) . 2 c
- B e ) (2-5)
2 F Hu* PX 4 x| c* (T -T* + %—(u*2 -u*?) l
=1 ] Py PPy m “f! Pi . psi Py [ |
|
Darticles: " o* (x4 -I_Hki)] T+ L _.3_ sk ux (cx T* +__1_ u*A* | = ‘
’ ) MEE 0T Tm i 2 Dy J AF A ~DL By i 2 Py ‘

St e
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where c; and c’s* are the heat capacities of the gas and solid propellant respectively,
Tl!‘ and TS are the temperatures of the gas and I th particle group as they enter the

f.
i

mean flow, and Q; represents the volumetric rate of heat transfer between the
I th particle group ahd the gas, It is assumed that ’l‘gf: TF, and that the kinetic

energy of the particles and gas at the surface may be !neglected.

Non-Conservative Equations

Continuity
o 3% o (*u*) oFU*  (A*
Gas: St* + TS xv = o* - Y (2-7)
-1:* 1(3*[}*) A*U*
Particles: i + Pi P B uw* - ————pi Pi da* (2-8)
rarticles: Stx Sxx 0 A« A dx* B
Morientum
e -k Su* ~k *.\u**_f’_i:k &k
Gac oF 5t toruF 3 s T ur(ul -u*)
I
N (2-9)
+&  |F* +3 w*(u* - u*)
i=1 i ! S Pj
i
N
Ag* 5u; Fp
:; Particles: bt*l + u;‘)’ }%x*l' = - E,_l (2-1¢)
Pj
’
Z
. Energy '
- rok AT : p* 3A* *
. ) g _ L nu¥ u*
Gas: e Tt U Syl r=
N
v 2 Q* +(u’; —GR)T* +8 w*| u*(u* -u*  )+c* (I* -T*)
=1 | Pi P Pt Bj psi m lc’f1 Pj
i
+ (1 *B -u*")"
1, P

2T* "
/M 1
oy 1 o 2
* | ~% KTk Ia) 4 = [k * — gk Kk
{p (lf T*/y) + 5 (us +u*®) - u uS”
(2-11)
{
4




dT* 3T* Q*
Py Pj Py
Particles: YT + U.B F - 5% o* (2-12)
i p;m

Auxiliary Equations

The equations of motion are supplemented by the following equations.

State: P* = p*R*T* (2-13)

Steady State _ - px 1

Burn Rate: r* = ¢* (1-,—;—) (l+cl‘:u*) (2-14)
ref

The guantity, w*, is related to the burning rate of the solid propellant, r* as

follows:
o*r*gk
s
. * = -
Mass Burn Rate: w* = FT+8)cos0 (2-19)

where p;, is the density of the solid propellant, £* is the local perﬁneter of the
propellant grain, 8is the total weight ratio of particles to gas (8=2 Bi)' and 6 is

the angle between the tangent to the burning surface and the axis i=1 of the
motor.
p*¥u* -u*D*
Di i
Reynolds number: Re; = L (2-16)

where D?L" is the .liameter of the i th particle group, and u* is the gas viscosity

given by
“u

*
Viscosity: LA (L) (2-17)

m T*

s} o

*

18p , Rei2/3
Momentum Inter- F* =\ =gz Ju* (u* - u*) | 1+( ) (2-18)
gmentum b p. ~ \p¥D? P, 6
action Term: i m i i
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where pr";l is the density of the metal oxide particles. The term F; is equal to the
i
drag force exerted by the particles on the yas, per unit volume, The drag coefficient

sed in equation (2-18) was obtained from a correlation of the so-called "stan-

dard"” drag coefficient versus Reynolds number data for single spheres, in steady

(6)

flow. The drag formula used was originated by Kliachko , and is,
2/3
_ 24 Re
Cy = C(1+ £ ) (2-19)

The sccond term in this cquation represcents a correction to the Stokes value,

24/Re, and allows the foraula to be uscd ot Reynolds numbers up to several hun-

dred.

bch 55_ .33
Heat Transfer Q’; = WI%? u* ; (T* -T*) (2+.459 Rei' Pre°vY) (2-20)
Term: Pi “m i Py Py

The last cot of parenthesis in (2-20) is thc expression for Nusselt number suggcst-
()

¢d by Carlson . Herc again, the sccond term represents o correction to the

Stokes flow value, i.e., Nu=2,

The velocity of the gas leaving the surface, Ugs is calculated by consecr-
vaticn of mass from the known propellant burmn rate and density, The parallel com-

ponent of surface velocity is

2.3 Nondimensionel Eqguations

The equations ¢iven in the previous section are nondimensionalized be-
fore being rocast into finite difference form. The resulting normalized variables
are more uniform in ;v agnitude. This uniformity is beneficial from a numerical
standpoint, The use of nondimensional variables also facilitates the task of inter-

vreting the calculatod results, The following nondimmensional variables are defined
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. v = x*/L T = T*/Tf A = A*¥/L¥
1 = t*u't’,*/L* P = p*/p;r w = w*L*/g%‘a*
b . 2.2
» u = uk/a*x p = O*/O* F = p* L*/s*%a*” (z-22)
5 f ' f P; P; ff
& /
a = 1* ’a * c = c* c * = * * *C * Tk
4 (/Lf m/p Qpi Q L/O an

where Tf is the propellant steady state flame temperature, PE‘ is the chamner pres-

sure, F and af are the density and sound speed evaluated at the chamber conditions,

. and L* is a reference length, usually the length of the grain. The dimensional

F velocities, temperatures and densities (both gas and particle) not listed have been
F:-: nondimensionalized in the manner of their listed counterparts.

,'::-: The nondimensional forms of the ~quations given in Section 2.2 are as

Fag

r}‘. follows.

Conscrvative Equations

Continuity
3o 1 w(uh) _ .
Gas: St + = X = w (2-27)
Vo
Particles: Vi +—L——3—(* u A = Buw (2-241)
‘ : At A "% Tp. p i =
i Fi

Momentum

3(ua), Lo P P dA
Gas: t —— —_ A = s — + \
adB At A ax (:\« ton ) v dx us|u,

{
. (2-29)
+ 2 "F + 3 wlu - u )
i- 1 { Pt s by
I
Al )
Py 1 3
Particles: —7— ' T % ()b R (2-20)
S pi :)i pi i i
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Energy
i =N T u’ 1 3 T u? _
Gas: 3t O(y—(ﬁ_l + 5 + A Sx pu (Y—-(_—)‘)"'l + 5 )A =
T u2 Q
1 9 f s Py
T B WPN R ) B o g B @2027)
C 1 2
+B8 w|— (T -T + = (W - u®
B |5 (G, 1)+ 5 - o)
i
3 U vy
cles: 2 c iy .12 c yal -
Particles: ST ppi()/-l Tpi+ 5 )|+ Y ppiupi(}’"l Tpi 5 )A| =
u (2-28)
A N ¥ e L)
y-1 p i -1 2

Non-Conservative Equations

Continuity
3p , 3(pu) pu
. —_— = Vo
Gas ot Ox w A
do ) u ) 0
Pe reicl Py (ppi Py
cre . + = -
rticles ST Y , w
Momeatum
e du duv _ 1 3P
Gas: o3t t Pu—;, = > x+<.u(us u)+iD
du ou
‘ Py P
Particles: T + upi Syl
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A
ax (2-29)
%o
i P1 aa X
—_—-‘a; (2—3U)
F +B8 wlu_ -u_) (2-31)
Py b Py B
1
I
F
Pj
—_ (2-32)
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v oL
[ " ¥ SR

ey |

) @ e e a e
AR,




-
-

IR

ALY 19

4,

{ APAAS

A

BRAER
B
LT

Energy
N (L a1 S S Sl S Tf'wh(u )
L SR VART IR IV iy Wi P Baevey) 2 tls

Q, (2-33)

*U A+ (0 -uF_ +8 w |ulu Sug e (T ST )W -0
i Y i i i S, ‘ Pr Py Pg. i
i i i
t
~T AT Q
P, b,
Particies: 3 +u = - (2-34)
t P X N
i D,
Auxiliary Equations
State: P==:T (2-35)
Steady State . p.n
Rgurn Rate: r = ¢ (f-") (L +¢ (2-36)
ref
IR
Mas: Burn Rt w = % T78) <558 (2-37)
(XX )k

AU I Mg Re. = ( L ! ) u o -u’ (2-38)

. i ¥ Py ‘

273
Momentur Intor- 18T *y* R(:i
actton Term: F = (——;—-—;—L%;:—) e {u -u) (1+ ) (2-39)
Pi Fon v Pi P b
Heat Transfer 6L *y* .55 .33
Tore : Q = (—;—;—Dﬂwp-) o (T -T)(2+.459 Re, Pr ) (2-40)
D gk o PTTPr P’ Py i

! Characteristic Equations

i Reference |
Caroteans ot rention,

Sunte clfteronce technigue,  The

the methosd of characteristics was used to solva the

I the present analysic these cquations are solved with a

reasons for the

switch are “liscussed in Section
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6.1. The method of characteristics is, however, still utilized in solving the
equations at interior and exterior, subsonic, boundary points, Finite difference

calculations at these boundaries were found to be unstable.

A method for obtaining the characteristic equations from the equations of
motion has been glven in Reference 1. Only the final characteristic equations are
given here,

Gas

The two families of flow characteristics are given by

- yia (2-41)

+ +
1 6P, 5u_ _oudhr  w Y P8
ypa 6t z ot A 3x .a Tf -1 z ¢ us“)— n (us" u)
QP
+XTlr 43 w(u -u ) +(1"”E L+ (4 -u)F (2-42)
- f i r‘l L pS. pl ~a 1 V‘"l pl pl
!
+8 wlulu -u )+ (T -T )+ (& -uf )
Pj 5. y-1 g i Ps. i
i i i
il
& A 3
where the total derivatives g— are defined as Framid (u + 2) ks
The gas st --emlines given by
dx
=2 = (2-a:
o u 13)

are slso characteristics, elong which the following compatibility relation hoids,

.
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6T ~y-1 8P _ . f s _ i
T vl Tl wly-1) . + 5 uu “ + (y 1)iZ} 50T

5 _ 5
where BT—_—B'F’LU’:.\?

Particles

The particle paths for each particle group

T b, (2-45)

are dual characteristics. The two compatibility relations along these lines are,

6 u F
PP, P,
el (2-46)
. pj_
and
6 T
PP, Qpi
R (2-47)
D.
1

6

} —62 3 + °
‘! o = ———— 1l —
wher t “t B, X

1

The particle continuity equation (2-30) is tncoupled from the remaining

equations (since there is no narticle equation of state which relates particle

density to particle temperatiure) and « annot be written in characteristic form. It

can, hnwover, be written in the following quasi-characteristic form.
b o 3u u
P Py = B - (__Ei + __p_l. _BA) (2-48)
ot 1, X A 2x
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2.5 Tump Equations At Gaps In The Grain

The current instability model is capable of trecting motor configurations
containina arbitrarily located discontinuitics (gaps) in the grain. If the web thick-
ness is finite there are area and burning rate discontinuities at both ends of the
jgap (sec Tigure 2-1), Furthermore, if the grain ends are uninhibited, the exposed
end will Furn and create a mass flow discontinuity at the plane of grain end. The
assumed one~dimensional inviscid flow model cannot account for the two-dimensional
and viscous eftects which are, undoubtedly, present in the neighborhood of such
gaps. It is hoped, however, that thc one dimensjonai model will allow the essence

of the effect of gaps on motor stability to be evaluated,

Uninhibited End Az >[\.l Inhibited End Al - /\2

@Pz’ UZ’AZ'CtC’

Fioro 2-1. Achematic of Two of the Possible Grain Gap Configurations

In “rdar to obtain & solution at the plane of a discontinuity (hereinafter
-alled an interior boundary) the equations of motions must be supplemented by a set
of "jumn" equations which express the fact that mass, momentum and energy are
~onservnd, ior both the particles and gas, when the flow crosses an interior boundary.
T™he appropriate "jump' equations, in nondimensional form, when A2> Al (see Figure
>-1) are given below. The equations when Al >r’*.2 follow from similar considerations

and are nct showrn,
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e Gas

;: Mass: DlulAl tm, = °2u2A2 (2-49)
o

.'I:.‘.‘ P2 Pl 2 . PZ P

h Momentum: > (AZ-AI) + A1 (—7—+ plul) + meuSe = A2 (-7—+ p2u2) (2-50)
& .

2 T,oowd Tfe T,

::::: Energy: °1”1A1(y-1 + -2——) 4 Mg ST = ozuzAz(;—_—l-— +-T-—) (2-51)
N

where rr.1e denotes the rate at which gas is produced at the uninhibited grain end,

* % -
oo lse Ay4)) (2-52)
e ota} (1+6)

R
2 l‘.x

oy

ug and TS are, respectively, the gas velocity and flame temperature, and fe is
theeend burﬁlng rate.

Particles
. : A+ " = -
Mass 0 3 upl 1 Blme pp1 upl A2 (2-53)
1 1 2 2
: S A+ .‘ = 2 A -54
Momentum o, up 1 /31meup op Uy Ay (2-54)
i i S, i i
1 1 i 2 2
e
ray: P . c,
Fnergy: opi upi Al (y—l Tpi + 5 Upi ) + ;iime v Tfl
1 1 1 1 e
(2-55)
(o] 1 o)
=5 4y A (=T +=u )
2 y-1 )
Py piz Py, Pi,
It is 2vssumed that u =u and T =T, .
p. S £ £
S, e i e
i e
e
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3. MG TOR GEOMETRY AND BOUNDARY CONDITIONS

3.1 Crain Geometry

The nonlinear combustion instability model developed in Reference 1 was
lir.ited Lo motors having cylindrically bored grains of constant diameter, This sim-
plification was adoptad by choice, rather than due to any inherent limitations in
the analytical model. With the feasibility of obtaining nonlinear solutions adequately
demonsirated it was appropriate to extend the range of applicability of the Instabi-

lity model to more ¢general, and, hence, more realistic, grain geometrles,

The current analysis is not restricted to constant diameter circular cross-
section ports., Solutions can be achieved for grains with variable cross-sectional
ared and arbitrary cross-sectional shape, within the confines of a quasi one-dimen-
sional framework. TFigure 3-1 contains a pictorial summary of the range of allow-
aple cenfigurations, In order to accomodate these geometries within the structure
2! the instability model both the equations of motion and boundary conditions had
to> be zeneralized.

In additicn to the obvious nécessity of keeping terms containing area de-
rivatives, two other effccts must be accounted for in order to properly model vari-
able area grains. As shown in Figure 3-2 when the cross-sectional area varies the

hun ne surface is necescarily oblique to the direction of the mean flow (in one-

air o foral flov), In such cases an element of length along the burning surface,
ds, i «roator then the incremental axial distance, dx. As a result,variable areea
Jromns L ove coare cxposed area, per unit of axial distance, than do constant ar:za

SrELNS, ‘2 ~ffect ic accounted for by modifying the relation between the suriace
mass Tius. rer unit cross-3ectional area, per unit length, w, and the buming rate

(see =qu-ticn 2-15), Also demonstrated in Figure 3-2, is the fact that when 6 40,
the veio. . itk whizh the gas and particles emerge perpendicular to the surig ¢

hes . cornnonent i tre lirection of the mean flow given by

u, =u_ sinB 3-1
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The momentum and energy equations given in Section ¢ proper'y account for the

axial momentum content of the combustion products,

Due to bum out, or by design, part of the chamber may not contain grain
at a given instant of time. As a result geometrical and/or flow discontiniuties are
created., The equations and techniques required to deal with such discontinuities

are discucssed in Sections 2.5 and 6. 4.

The inclusion of end burning effccts does not requirc any modifications
to the equaticns of motion, however, the boundary condition at the head end of the

grain is altered, as discussed in Section 3,3.

7730

Figure 3-2, Schematic of a Variablc Area Grain

(/5]

.2 Nozzle Geometry

In the existing linear stability analyses, and in the nonlinear analysis
of Reference 1, the behavior of the nozzle is assumed to be quasi-steady, With
this assumption the exact details of the nozzle geometry do not enter into the pro-
blem, The current instability program has been modified to integrate through the
throat into the rupersonic region, This allows the nozzle acoustical impedanze
to e calculated without resort to the so-called "short nozzle" (quasi-steady)
sssumption.., An option to do quasi-steady nozzle solutions has been retain: d, ;
wowever, since this approximation allows solutions to be obtained far mere

cconomlcally., It wo. 'd be worthwhile to compare instability solutions obtalncd

L inteasating the full transient equations through the throat to those obtained with
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" the quasi-steady approximation. In this way one could hope to assess the
"q':: relative accuracy, and range of applicablility of the quasi-steady approximation.

K

Since the current program provides the option to integrate the equations
of motion through the throat, a complete specification of the nozzle geometry is

B

- *
'S
PR A

’

required, Since the area derivative is also required, it is preferable to specify

S e w
lL'

the nozzle shape as an analytic function, rather than via a tabular description,

The analytic representation insures that smooth and continuous derivatives will be

X

-

.

- obtained., The disadvantage of functional descriptions is that they limit the

.

Q'.-j allowed range of geometries, to more, or less, of an extent, depending on their
D*‘:.

generality., At present, the instabllity program assumes the nozzle can be des-

cribed by a circle-cone-circle-cone geometry as shown in Figure 3-3. The nozzle
Is considered to be composed of four separate regions. The nozzle entrance is

located at the beginning of region 1. From thic initial location the convergent

T
e
.
-, T
»
e
-".l

section of the nozzle is assumed to vary in a circular arc in region 1 and conically
in reglon 2, The throat, region 3, is assumed to be a circular arc, and, finally,
the convergent section, region 4, is teken to be conical. A certain degree of
flexibility is allowed within the confin:s of this overall geometric description,
however, should this class of nozzles prove to be too restrictive it will be easy
to extend the range of allowable nozzlc geometries.

In the present nozzle description the following quantities are to be
specified by the program user. All areas and radii have been normalized with re-
spect to the throat area and radius, rc..pectively, while all angles are considered
to be positive,

Quantity Description
3 Axial location of the nozzle entrance,
Al Area ratio at Xy
61 Wall inclination at X
92 Conlical entrance angle.
63 Conical divergence angle,
RC1 Normmalized radius of curvature of the throat,
121
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Quantity Description
R Normalized radius of curvature of initial

Cy nozzle entrance section.,
And Area ratio at nozzle exit. (Nozzle exit

for computational purposes {s not real
nozzle exit),

These quantities completely specify the nozzle geometry in all four regions. The
equations given below, by region, are used to calculate the area ratio and area
derivative at any point in the nozzle. The distance from the nozzle entrance to
the throat Is given by the important equation

x, - X, =R sin(e?‘—61)+RC sin@2

t 1 c
2 1 (3-2)
1/2 - - -
Al -1 - Rc2 [1 - cos(e2 61)] Rcl(l cosez)
+ tan 8
an o,
Region 1: X, <X S X,
Xy = X) +RC2 sin(S2 —61) (3-3)
A= AI/Z—R 1 -cos(6. -8,) ’ (3-4)
1 c2 w 1

1 X=X

Ow = sin " ( R ) (3-5)
c
2
dA _ _.1/2 i
?;(- = ~-2A tan ew (3 6)
Region 2: x2<XSx3
Xy = Xy = Rcl sin62 (3-7)
123
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2
| A1/2 _ . _
A= Az (x xz) tan 92 (3-8)

N

gls

tan 92 (3-9)

Region 3: X, <X=<X

x4=xt+Rc sinB3 (3-10)

1

1/2 |2
] (3-11)

= - 2 - - 2
A 1+Rcl [Rcl (x xt)

Q.A_:ZAI/Z(x-x)[RZ-(X—x)z
1

dx t t

-1/2
} (3-12)

Region 4: x4<xsxend

i 2
A=[A}1/2 +(x-x4) tan 63] (3-13)

dA _ 2A1/2
dx

tan 93 (3-14)

3.3 Boundary Conditions

If the transient equations are integrated through the throat into the super-
sonic portion of the nozzle only boundary conditions at the head end of the motor
need be specified. No boundary conditions are required at the supersonic exit
plane because all signals from the plane travel downtream only, and, hence, do
affect the previously calculated upstream flow. If the quasi-steady assumpti~n
is utilized a boundary condition must be specified at the nozzle entrance plane,
This boundary condition serves to enforce the choking condition that is, otherwise,
set by the nozzle throat.

By modifying thz boundary conditions the instabllity program can be made
to yield solutions to other rroblems, Two such modifications have been incorpor-
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ated into the program. One allows nonlinear particle damping to be studied by
specifying a closed end boundary condition at the right boundary. In this way the
amplitude behavior of a finite wave initiated in a particle containing closed tube
can be calculated. The second modification allows two phase, steady state, nozzle
only, solutions to be obtained without having to deal with the throat singularity

normally encountered in this problem,

All of the boundary conditions alluded to previously are definitized in the
balance of this Section,

Head End - No End Grain

With no end grain present the boundary conditions at the head end are
taken to be those corresponding to a rigid wall, i.e.,

y =0 (3-15)

As discussed in Reference (1), certain assumptions are implicitly invoked when
these boundary conditions are utilized. These implied assumptions are, however,

no more restrictive that those already listed in Section 2, 1.

Head End - With End Grain

When there is a burning grain at the end of the motor the boundary condi-
tlons constrain the velocity and temperature of both the particles and gas to be
equal to their counterparts in the combustion products, as the products leave the
flame and enter the main flow. It is assumed that the velocity and temperature of

the particles is equal to that of the gas. The boundary conditions may, thus, be
stated as

U =u=u
p. s
i
(3-1n)
Tp. =T= Tf
i
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Supersonic Nozzle Exit Plane

As previously discussed no boundary condition is required in this case.
The properties at the exit plane are currently calculated with a one sided dif-

ference technique,

Quasi-Steady Nozzle Boundary Condition

If the quasi-steady nozzle assumption is invoked a boundary condition
must be specified at the nozzle entrance, The boundary condition currently utiliz-
ed requircs the mach number at the nozzle cntrance to be such that the flow will
properly choke at the throat. It is assumed that the two phase flow in the nozzle
can be calculated from steady state relations, and that the particles and gas are
in equilibrium (no velocity or thermal lags). With these assumptions the two phase

mixture behavior is equivalent to that of a perfect gas having the following proper-

ties
- (1 + 8c)
v = Tvate
(3-17)
_ o) )(1 + R¢)
- —L—-—
Cp 1 +R
The ' " :ch number of the "equivalent" perfect gas, I_\/—L is related to the gas Mach
numior hy
M=k£%M (3-18)
where
E=1+3|1+6- e L8 3-1¢j
(1+3c) ”

The Mach number of tha "equivalent” gas, at the nozzle entrance, Me’ is found

by solving the usual isentropic equation for mach number as a function of arca

ratio
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y -1 (3-20)

The actual gas Mach number is then found from equation (3-18). The Machnumber
obtained in this manner assures that the flow will choke at the throat (Mt=1 at
the throat, M=1 at some point downstream of the physical throat) within the con-

fines of the quasi-steady, one-dimensicnal and equilibrium assumptions.

In Reference 1 the quasi-steady boundary condition was obtained in a
similar, but more accurate, manner, In that analysis the constant lag assumption
{particle velocity and thermal lags are finite, but constant) was used instead of
the equilibrium assumption. The quasi-steady analysis of Reference 1 was, how-
ever, restricted to particles of a single size, and utilized the linear Stokes flow
drag coefficient, It is recommended that the current method of obtaining the
quasi-steady boundary condition be upgraded by reinstituting the constant lag
analysls, after it has been extended to allow for multiple particle groups and a
nonlinear drag coefficlent.

Boundary Condltions For Particle Damping Calculations

The Instability program can be made to yield nonlinear particle damping
solutions by eliminating the grain and applying a closed end boundary condition
at both end of the computational mesh. The physical analogy to this situation is

a closed end tube filled with particles., If the reference length, L, is chosen to be

the length of the tube the boundary conditions become (see head end-no end grain
boundary conditions):

(3-21)

.’ (

D
|
"
-
b
N
-
'«
.
i
b
N

W JEENTS s .



1

”\r.‘w/i“

M r T S A A A S A e P AR A A

Nozzle Only Boundary Condition

The program can be made to solve for the steady state, two phase, flow
in the nozzle only by applying steady state boundary conditions on the left hand
end of the mesh and treating the right hand end as a supersonic exit plane. The
program then obtains the steady state solution as the asymptotic limit of a transient

| A AR PN JLA A

flow. When treated in this manner the behavior of the flow at the throat i{s not
singular, hence, special techniques such as that utilized in Reference 8 are not

required in order to continue the integration through the throat.

The proper boundary conditions for this problem require that the total pres-

. LSS LR

sure and total temperature at the nozzle entrance be equal to specified values,
The state of the particles at the nozzle entrance is determined by their flow history

LA RPN

L LT T

up to that point. Since that portion of the flow is not calculated for this problem

some assumption regarding the state of the particles at the nozzle entrance is re-

i

quired, It is assumed that the particles and gas are in equilibrium at the entrance.
For most nozzles the mach number and local flow acceleration are small at the
nozzle entrance. Thus, the equilibrium state should be closely approximated in

the physical situations likely to be encountered,

Y AACNTRIE

All of the aforementioned boundary conditions are relatively simple and

(Y
«

straightforward., The same cannot always be said for the techniques required to

]

implement them in the numerical solution, (see Section 6.)
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4, INITIAL CONDITIONS - STEADY STATE SOLUTION

3 AL

The stability characteristics of a motor are determined by its transient

EE response to a disturbance away from steady state operating conditions, The effort
f.:\ to numerically simulate those stabllity characteristics must, therefore, begin

o with a determination of the steady state. The initial conditions for the instability
"~ problem are then generated by adding a perturbation to the steady state solution,
j“}: There are two different routes which may be followed in seeking a steady
E:}. state solution. One way is to directly solve the steady state equations of motions,
Y

obtained by setting the time derivatives in the equations of Section 2.2 equal to
zero. Altermnately, one can obtain the steady state solution as the long time

o r

e g
g
A

(1imit+®) asymptotic limit of a transient problem in which the propellant burning
rate is assumed to obey the steady state P" burn rate law, for all time. The latter
approach is the one currently utilized.

L

The chief advantage of the transient approach is that the numerical tech-
niques and computer program subroutines required to obtain a steady state solution

are the same as those utilized in the transient instability solution. The direct

approach to the steady state problem, on the other hand, requires the development
of additional numerical techniques and another set of corﬁputer subroutines, By
eliminating the need for additional subroutines, the transient approach to obtain-
Ing steady state solutions results in a program which is simpler, and easier to use,
niodify, and understand.

A disadvantage of the transient approach to a steady state solution is en-
countered with expiicit difference methods (the type presently utilized) when the
solution is to be continued through the throat, i.e. when the quasi-steady nozzle
approximation is not employel. This disadvantage is a practical one, resulting
from the relatively long computer times required to obtain steady state solutions
for such cases. (See Section 6.2).

When the current effort was initiated there was no intention of treating
the nozzle in other than a quasi~steady manner. Thus, the existing difference
techniques were evaluated purely from that perspective. As the program progressed
it was recognized that the option to integrate the equations all the way through the

throat could ke incorporated int® the program with little additional effort. It was

. . . B T . - A e e~ e e e e T e
. ~ - . . . -0
o n e e e e Nt At ma “ L, L. . s

e R e . Semt e e e e e et e, P U T AN S L e ISR PSP AN U AT TR
R SRR S S S Y YA AR S 'l‘,':ﬂ‘.". R ,l_’.gihlf.A‘_';:AI‘L‘_"\. SRV 'l‘ VPSS S PRI A CVIRY I W, VG D SUINLIPY. PRSP S



- R . It S P N e b4 vy
E_‘ ST NN h"uvn‘ wh o K A ‘.‘_\" L Al il o L
- A A Sds

ok 2 wadific xtion woula be advantageous, since the adequacy of the

1y approximation could then be directly examined. Should it prove to

.2 *0 integrate through the throat as a matter of course, rather than in

w0 jnitied

. ready state burning rate law is utilized, the calculated flowfield will

. % zally approach the nne respr?scntative of a true steady stait'e solution,
': 2r words, the time derivatives\of the transient flow eventually approach
~hich time the flow variables wAll exactly satisfy the ste?’ldy state

' of motion. In reality, this limi can only be approacheﬁ to within a

. tolerance; to reach the limit wo:\d, literally, take forefver. As would
~ed, the number of calculations of required to reduce t:hfe time derivatives
- a specified tolerance is signific:antl\x dependent upon,'.the quality of the
-:ate, i.e. the dearee to which it differ\s\from the correfct solution. The

ﬁ_'ﬂl 2 is tolerant of poor initial guessecs, hobqever, much fcomputational time
F?:fa'/ed by nroviding a means of selecting a\‘geasonablﬁ accurate initial

The procedure presently used to generate thé\ initial };tate is briefly de-
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) N
e calculations for the initizl gas properties ssgume the two phase mix-

'fff in dynamic equitibrium, The isentropic exponent hich characterizes the
"¢

<. state expansicn process for such a mixture is given\ by equation (3-17)
Em (3~20) can thien be solved to obtain the "equivalenk" gas mach number as

“-ior <f ares ratio in the nozzle, The Mach number is then assumed to linearly

1~ zero fror1 the nozzle entrance (usually the end of f‘ne grain) to the hecad

BT ERAS]

v “he motor. The .3s properties are then established {rom \.he isentropic ro -
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e e _a
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- 5 as a ‘unction of Mach number, In the chamber the equillbx‘tgm assumption
r . . . N
- :d to generate il-e particle properties, i.e.
-
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felt that such a modification would be advantageous, cince the adegquacy of the

quasi-steedy approximation could then be directly examined. Should it prove to
be desirable to integrate through the throat as a matter of course, rather than in
very limited cases, it could be quite worthwhile to switch to a more suitable num-

erical techniqgue.

The transient method of seeking steady state solutions proceeds as fol~-
lows. At t=0 initial values are selected for the flow veariables throughout the
domain of interest. Since the exact solution is not known, these initial values
will not satisfy the steady state equations of motion. The integration procedure
is initiated; then, provided that steady stete boundary conditions arc applied,
and the steady state burning rate law is utilized, the calculatecd flowfieid will
asymptotically approach the one resprasontative of a true steady state solution,

Or in other words, ‘he time derivatives o7 the ransient flow eventually approach

zero, o which time the Zlow veriables will xoctly saticf s the tleaov stets
equations of motion. In reality, this lim it can only e aprrosched o within
specified tolorance; 7 reach the fimit »olla, literelly, tebe forever, As woull

ho expecied, the number of calculations oI required ' reduce tho time dorivatives
to within a specified tolerance is significantly dependent upon the quality of the
initial state, i.=. the degres to which it differs fromm the correct solutio Tho
technigue is tolerant of poor initial gueszes, however, muct comiutational time
can he saved by nroviding & rmeans of selocting a reascnsbhiy —ccourete initiel
staic. The procedure presently used to Generate the initial state is briefly de-
scrib=sd below,

The calculations for the initlal gas properties assume the two phase mix-
ture is in dynamic equilibrium. The isentropic exponent which characterizes th-
steady state expansion process for such a mixture is given by equation (3-17)
Equation (3-20) can then be solved to obtain the "equivalent" gas mach number as
a function of area ratio in the nozzle, The Mach number is then assumed to lincarly
decrease to zero from the nozzle entrance {(usually the end of the grain) to th: n~ad
end of the motor. The gas properties are then established from the isentropic re-
lations as a function of Mach number, Ir the chamber the equilibrium assumption

is used to generate the particle properties, i.e.
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In the nozzle the particles are assumed to lag the gas. The amount of

T

e lag is assumed to vary with area ratio from zero at the nozzle entrance to a speci-
v_',-
‘s fied value at the throat.

2 Once the steady state solution has been obtained, initial conditions for
E the instability calculation are generated by perturbing the flow from the steady
r‘-' state. The following types of perturbations are currently built into the program,

Harmonic Perturbations

10 X - X
pP' = a_ cos {nn(—-—-—o)J (4-2)
_i N0 X - X
n =1 “p "o
and/or
10 X=X
u :E_ b . sin [n TT(X—_—X—-—)J (4-3)
n =1 p o

wherc the 3, and bn are arbitrary constants, X5 is the head end of the motor, and Xy

is the location at which the disturbance terminates.

Pulse Perturbations

x <xsx_ -=x)/2
o p )
X - X <,
P'=a, Sm[n(x — ):] (4-4)
D
and/or . 0
u' =b) sinm( —-xo) (4-53)
o)
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l,xp - xo)/Z <X

X - xo 02
| sin {n (—-)] l4-4;
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and/or
(4-7)
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where a,, b Cqe dl' Co» d, are arbitrary constants., The c¢'s and d's control

1" 71’ 2
the effective width of the pulse; the a's and b's control the amplitude. If ¢, £

1
c, or dl #dz the pulse will be asymmetric.
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N 5. NONLINEAR TRANSIENT BURNING RATE

o

N The mathematical model for the instability problem is not complete until
, a method for computing the transient burning rate response of the propellant has
.::' been s(pge;:ified. Most of the previous transient buming rate analyses have been

~ linear , including the burmn rate analysis in the author's previous instability

o model (1 ). It became c¢vident from our previous work that & linear transient burn-
:‘_-\. Ing rate model has serious limitations, Typical pressure fluctuation levels in

motors, coupled with response functions on the order of three, can yield fluc-
tuations in burning rate on the order of 50%, or more, of its steady state value,.
One could hardly expect linear theory to be valid at these large amplitudes, since
it 1s based on the assumption that all quantities depart only slightly from their
steady state values. Thus, to extend the range of applicability of the instabi-
lty analysis a nonlinear transient burning rate model has peen developed, and
incorporated {nto the computer program,

Past investigations of nonlinear burning ratc response have been carried

(10) 11) (12)

, Brown and Muzzy( , and Novizhilov , using

, . . 13 . .
expansion procedures, ond by Krier, et, al.,( ) using a numerical procedure,

out by Friedly and Peterson

The expansion procedures are quite cumbersome, and dJifficult to modify and extend,
especially when carried to higher orders. Thus, o numerical approach to the
solution of the heat conduction equation in the solid was favored. Recently, two

14 ,
nonlinear transient buming rate models have bcen lnveloy)ed( ’15), and solved using

(14)

ing the current coutract. These models are quite similar, both to each other, ind

numerical techniques. The analysis reported in Refrerence was performed cur-
to that of Ref. (13), however, there are subtle diffecrences between them. The
numerlcal methods utilized in each of these investigations also differ, While, in
basic agreement, the results of References (14) and (13) and (15) differ in regards
to the nonlincar behavior of the burn rote predicted when so-called “intrinsic in-
stability" occurs, In References (13) and (14), buming rate "runaway”, i.c. an

unbounded increase in burning rate, is observed under intrinsically unstable con-

ditions. In Reference (15) a so-callec "spiking" behavior is obscrved, The burn-
ing rate periodically increases rapidly, reaches a limit, and then decays, in
response to an ap;licd, fixed amplitud., haermonic Jdisturbance, 't has yet to be
established wheth °r this difference can be attribite @ to the use of different num-

erical technicues, or to the <linhtlv iifferont visoe s tions made roegarding gas
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phase energy release., Too much effort should not be devoted to understandino

the behavior of propellants under intrinsically unstable conditions. Some or tho

assumptions upon which these analyses are based are seriously violated during

’, -

:,. g such extreme behavior, so the results obtained are invalid. The chief goal in

N

;:-:- regard to intrinsic instability should be to determine if real propellants can ever
>4

¢

exhibit such behavior. Hopefully, the present theories can be utilized to decter-

mine the limiting conditions at which this behavior is incipient,

W

] “./

:j‘:_J The burning rate of a metalized solid propellant is undoubtedly sensitive
.

o to both pressure fluctuations and fluctuations in the velocity parallel to the bum-
J.

ingsurface., All of the aforementioned nonlinear buming rate theories treat only
the pressure coupled response. The linear burning rate theory developed in Ref-
erence (1), and other linear theories References ( 16 through 20}, have attempt-
ed to account for the effect of velocity fluctuations. These velocity coupling
models are crude, and have little, or no, theoretical basis, The effect of a velo-
city field parallel to the buming surface can easily be incorporated into the non-
linear models by including & velocity dependent heat flux term in the interfacial
energy balance at the buming surface, Unfortunately, there has yet to be a proven
mechanistic explanation of how a velocity field actually modifies the surface burn-
ing rate and, or, energy release. Until physically based theoretical models of
velocity coupling are developed, and verified, the results of velocity coupling

calculations will remain speculative, at best,

The nonlinear transient burning rate model currently used in the instability
analysis is presented in the balance of this Section. The assumptions upon which
the burning rate model is based are similar to those employed in the previous m<n-
tioned analvses, The gas and solid phases are treated as homogenous, and only
one dimensional variations in the direction normal to the buming surface are 2c-
counted for. It is assumed that all of the solid is converted to gas at an infinite-
simally thin interface at the buming surface; subsurface reactions are not con¢ic
ered. The gas phase 1s assumed to respond in a quasi-steady manner. The fla'.«
is taken to be anchored at the surface, with uniform distributed heat release .ut
12 the cdge of the flame. The gas reaction rate is assumed to be a function of
pressure only, and the »resence of metal in the propellant is not directly accounted
inr, The specific heats and thermal conductivities are taken to be constant, for

convenience, but unlike p.evious nonlinear analyses the gas and propellant specific
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heats may differ, The surface pyrolysis rate is assumed to be yiver. by 2n
Arrhenius law modified to account for pressure coupled surface reactions, /ith
these assumptions the calculation of the transient burning ratr at a given chamber
location reduces to the solution of the nonlinear heat conduction equation Wik a
nonlinear boundary condition. For reasons of computational efficiency bumin:
rate solutions are not obtained at every {inite difference mesh point ot whi !

there is buming, Instead, transient burn rate solutions are obtained as & - 710s
of axial locations; with bum rates at intermediate locations being found by v
order interpolation. Since the propellant cannot respond instantaneously tc ©is-
turbances the axial variation in burn rate tends to be smoother than that <f

flow variables, and the interpolation procedurc works quite well,

With the approximations listed previously, in a coordinate systom fimo

to the gas/solid interface, the heat conduction equation may be writtcn cs

aT oT _  3*T .
3t Sk I (5-1)

In this coordinate system the solid appears to be flowing in fror tho 0%t
at a ratc given by r(t). The source of the nonlinearity in this equation .5 ‘he ~an-
vection term r3T/3x. Two boundary conditions must be given to compliote ho
specification of the problem. At the propellant back wall it is assume ! that *he
temperature remains at a specified constant value, thus, the boundary coniition

there may be stated as

Tem )™ o G-
The boundary condition at the surface, x=0, i3 obtainm v oriormine
mass and energy balance for an infinitesimally thin control wolo GoarctLnline
the gas/solid interface (scc Tigure 5-1). The mass balance a4t ke nte:r oo volds
0. L 7 Cu im (5-2)
S g g

(since the presence of metal in the propellant is not dircctly aconante: for)
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Combustion products onter main flow

Flame Zonce

Surface

Figure 5-1, »che cutic Represeontation of Combustion Model
And Gas-5Solid Interfacial Dnergy Bolance
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where Og and ug are the density and velocity of the gas at the propellant surface.
The energy balance leads to

S 2T o . 3T
Pty = kgmxl- = Pqighs, ™ % il (5-4)

in which the enthalpies on the solid and gas sides of the interface are h  and
hs , respectively. The net heat released at the surface,per unit mass,is equal to
the+ difference between the enthalples of the solid and gas on their respective

g
.
’
;
/
i
'
,
¢
4

sides of the interface. If the quantity Qs is taken to be positive when the net
heat release is exothermic one may write

Q (1)

]
=
[
=

(5-5)

n
Q
[/}
~3
n
+
>
o
|
Q
3
0
I
=g
o

where Ah; and Ah; are the heats of formation, at zero degrees Kelvin, of the
solid and gas respgctively. It is convenient to define a quantity, 55. equal to
the net surface heat release at the steady state ‘surface temperature _'I_'S.

™ ra) fed T © — T - © -
Q;(Ts) QS = cS’I‘S +Ahf_ c!:‘TS \hf+ (5-6)
With (5-6), (5-5) may bc written as
=g )=Qu) =T+ e - o)) (T - T (5-7)
Substituting (5-3) and (5- 7) into the energy balance (5-4) yields
AT, _ aT = =
ks Ix |- = Kg 34 t M| Qg+ leg-c ) (T -T) (5-8)
3T )
The term kg =l is evaluated from a solution of the gas ph..se. Subject
to the aforementioned assumptions the gquasi-steady energy equation for the gas

phase is
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dT _ d*T
me'&—kg‘?"‘Qf (5-9)

where Qf is the heat release per unit mass, and w is the reaction rate times the
gas density. Integrating equation (5-9) once, applying the boundary condition
dT/3x = 0 at x ==, and evaluating the solution at x=0 yields(13)

Qk
k Sl = == |1 - explome xg/k ) | ¥ (5-10)
p

which, as shown in Reference (1), is well approximated by

Q.k
y%z_[ = fgw (5-11)
x '+ cp m

In order to utilize (5-11) an expression for w must be specified. It is at
this juncture that the current model and that of Reference (2 ) depart. In both cases
it 1s assumed that w is a function of pressure only., In Reference (2) it ls assumed
that w ~P" exp —}Sf/Ron+ . However, in the present model it is assumed that the
dependency of w on pressure is the same as that in the steady state, without ever
specifying what that dependency is. The current assumption {s more general since

: cimplistic approximation to the steady state burn ratc mechanism is not invoked,

It is easily shown that the steady state solution to the heat conduction
aquation (5-1) is

=1

-T
® = explrx/A) (5-12)
-T

Gl

S

So, the steady state temperature derivative in the solid, at the interface, is

= p rcg (T, - T) (5-13)

*This is a result of assuming a simple one step, second order, reaction rate model.

128
. T e e e T T T T e TN L L s P AP)
WA oy N o S e e Yy Cadie s
e NCPE AR \;\>._\..a._-._-._\ LY \A’u’ﬂs’s'g AP PRt e L(L{L NN RPN




v LA Sl ad v "—v' ‘ J— i
oy i Jrtalet Jud's A -B S A ANEAARAMMEIP S WAt AV AA RS I R R A R 2 i oyl i S AL WA B AL A A L RS
v AL I B o AR . [ AL Y

Using the interfaclal energy balance, (5-6), (5-13) may be written as

. kg dx a, [cs T, - 1,) - QS] (5-14)

ﬂﬁ
M

Combining (5-14) with (5-11) ylelds a relation for w, in the steady state

C
w = _Gf{__;z [Cs (T, - T,) - 65] (5-15)

S

s

=

5 B YY
TP IR P N

In order to find w as a function of pressure the surface temperature is
written in terms of the buming rate through the assumed Arrhenius pyrolysis rate,

oL

n

IR _ _ S _ _

E-'. m=p r=BP ~exp(-E,/RT) (5-16)
N

F or, solving for temperature,

AN E /R

v.

" T = 5.9 (5-17)

S n
In BSP /psr]

The burning rate, r, is, in turn, written in terms of pressure using the steady state
n+
buming law r = aP

E_/R
Quasi-steady T, = SW?HT (5-18)
In [BSP S /(osa)}

Substitution of (5-18) into (5-15) yields the steady state dependence of w on pres-
sure

2 -N e
w = w(P) = cﬂpsazpz CSES/RO -c T -Q (5-19)
ka _{n _-n) § ™ s
S In [BSP s /(psa)]

+Any analytical, or empirical, burning rate law desired can be inserted into the
current model at thls juncture,
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: The quasi-steady analogy to (5-19) is found by replacing P and QS in (5-:9) with
) -
P and Qs (since Qs varies with Ts and Ts varies with P). Using (5-18) to eliminate
;,:. Ts ylelds the final equation for w
.t 3
t‘_'_'. c pzsaszn ES/RO _ _ . '
- w= Qfk “p -y st cs(Tg=Ta) - Qg (5-20)
v g BP °
=
0.3 J

The desired surface boundary condition for the heat concu*ion cquation
is then obtained by inserting (5-20) into the gas phasec solution (5-11), and then

using the interfacial energy balance (5-8) to arrive at

2 _2pan ~
ary 5o o[ BB 21,7 o S|
ax ' — ks c (ns-n) s S = cg m
S B,P

In 3
Og

m [= —
+ rs—— [Qs + (cs-cp) (Ts__Ts)]

With this boundary condition the specification of the heat conductlorn
problem i{s complete. It is convenient to introduce the following nor iimaension=zi

varlables:

-~ —u - T - ’I‘m
p= Lt £= % R= — = ——— _P.=—;
Xe % r T -T
S (=
hence, (5-22)
XC _ ){C _
dt = — dt dx=—_—d€ r=rR T = (T —Tw)dg
re r S
The heat conduction equation (5-1) can then be written as |
2 !
29 4R g—g - g—g‘i (5-23) :
at .
'
\
\
\
\
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The back wall boundary condition (5-2) becomes
§=0 at £=-= (5-24)

After considerable algebralc manipulation the surface boundary condition
{5-21) can be written as

36 P p E 1
- F Ve, R | Th -1 | +1-H

1+ InP

E
(5-25)

c
- B -
+R |H+ (1 cs)(Gs 1)

where the following nondimensional buming rate parameters have been defined:

E=E/R T, (5-26)
A=E(l- =) (5-27)
TS
Q )
Hs ——3>— (5-28)
cS(TSme)

The burning rate ratio, R = r/r_, can also be written in terms of nondimen-
sional variables as follows, From (5-16)
n T
R=P 5exp |E (1—T—S) (5-29)
s

which, after some manipulation, can be shown to equal

. pns A(Bs—l)

(5-30)
A
1 + —E‘ (Qs“’l)
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o In terms of the nondimensional variables the solution to the steady state
X

et heat conduction equation, (5-12) becomes

> _

2 g =eb (5-31)
-~

e

The nonlinear transient burning rate model previously outlined is solved
numeirically using the implicit Crank-Nicolson technique. The details of this pro-
cr:dure are described in Section 6. 5.

§.1 Nornlinear Equation For Flame Temperature

mcpr

edge of flame

"
1
—
I
J
-
'
'
)
J
g

P
[

o e —— - ——

S e T swface
- - - t i T h
2T, s ]

m(cp'rsiof) kg -_—
Figure 5-2., Energy Balance

Across the
Flame Zone

4

& Tn__.‘“__;...‘ -J

In this section a nonlinear, nonisentropic, equation for the transient flame

temperature response is developed, based on the preceding buming rate model. A

heat balance across the reaction zone ylelds ( see Figure 5-2).

oT
m[Qf - cp(Tf - TS)] = kg_bY' + (5‘32)
In steady state (5-32) becomes
— = =4 _ 3T N
m [Qf— cp(Tf— TS)] = kg AX\+ (5-33)
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Subtracting (5-33) from (5-32) ylelds
3T AT
k. 5=, k. =]
gax + _"goxi+ _ T _T ) - - -
m = cp | (Tg = Tg) - (T - T) (5-34)

3T 3T
If (5-11) and (5-20) are used to evaluate kng-|+ , and kgﬁh— is evaluated
from (5-14), equation (5-34) may be written as

Tf-T =T

- apell C c E /R _ _
-T -2 st e S 0 T |+T -T
f S S c c {n_-n) s S @
D S BPpP S
In\-2 P
Ps (5-35)
Q c Q
o R L
s p [

In terms of the previously defined nondimensional variables and parameters
(5-35) becomes

= PR c °p E 1
§-08;=0,-1-w e A" tn_-n) -l)+1l-H
P s 1+ T InP
(5-236)
s
+E—(1-H)
p

The form of the flame temperature equation used in the numerical solution
of the equations of motion is obtained by writing (5-36) in terms of T, rather than

6. In doing so equation (5-30) is used to elimlnate the quantity (Gs—l). The re-
sulting equation is

™ n - el
oo s mwe®s | T Boes |G 1 o
¢ ng T R ¢ c (ns—n)
“f f L E-InR/P ®) f 1+ —5—1Inp
T (5-37)
AL S cs A
b P
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5.2 Linear Transient Burmning Rate and B Parameter

In order to properly assess the nature and magnitude of the nonlinear burn-
ing rate effects one should compare the results of two sets of calculations in which,
except for the bum rate nonlinearities, all things are equal. The ability to carry
nut this assessment has been provided for in the current investigation by incorpora-
...y tath the nonlinear transient burning rate model, previously described, and the

tine.s moael derived from it, into the instability program,

The linear equations result from evaluating the nonlinear buming rate

the~ry in the limit of infinitesimal perturbations, Thus,

P oop-1<<
P
L aR-1) <<l (5-38)
r
8'5 =-(6S - 1) <<
etc.,

In order to obtain a linear form of the conduction equation, which could be
easily solved by the same computer code as the nonlinear equation (with minor mod-
ifications) the nonlinear term in equation (5-23) was removed, as follows, The

teom, R 36/3€, may be written as

L'y (28, 28 -2q
(1"';_)(55"'5—5—) (5-39)
The nonlinear tem is
rl 561
- - (5-40)
r 2
which may be written as
A8 3p )
(R-l)(f-gz—) (5-41)
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Using (5-31) to evaluate 36/3 £ results in
®-1) (§F - ) (5-42)

Subtracting the nonlinear term, (5-42) from (5-23), then ylelds the linear form of
the heat conduction equation

2
28,80 . 28 - R- 1)eb (5-43)
at 9% 3¢

The other nonlinearities, which occur in the surface boundary condition,
the Arrhenlus Pyrolysis law, and the equation for the flame temperature, must
also be eliminated. To obtain the linear forms of these equations the variables
are all written as the sum of a steady state value and a small perturbation (see
5-38). Expanding the relevant equations, (5~25), (5-30) and (5-37), in Taylor
series about the steady state, keeping terms only up to first order in the perturba-
tion quantities, yields the desired linear equatlons. Without going into the details
of the procedure, the results are

Surface Boundary Condition:

ae|=1+n(g- 1) 2(1—I-I)+~(:R—l—n—s +(R-1)|2H -1
'SE_ cS A  nA
(5-44)
+ (1 - cp/cs)/A]
Arrhenjus Relation:
R=1+A(GS—1)+ns(g-l) (5-45)
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:\-; Flame Temperature:
T, T Cc c
e Tf'(—_-f—-—l)=-nP—l)—i —2—1—+2A(1_H)
N T T c Cq E E
‘.\v", S f p
7z (5-46)
¢

°s [ Sp 1 A
+(R—1)C—p' CS —E'f'?_—ﬁ'(l-H)

4

St ey

’2's’a

The steady statc solution (5-31) and back wall boundary cond.tion (5-24)
are indentical in the linear and nonlinear cases. This set of linear equautions and

.
LIS N

PN AR

boundary conditinns can be solved as is, however, in order to facilitate the task

-';:: of relating the present results to those obtained from other, similar, or equlvalent,
i linear models (such as the linear model developed in Reference 1) the often used
t.- parameter, B, is introduced,

The parameter, B, is defined in Reference 1 as

4

_$ 1 c ) c
ol B=T A(I—H)*‘—P—EI\J‘F—R (5-47)
- c c
s s
where
o Qkw
e=t9 (5-48)
-]
m"cpTS

Substituting (5-15) into (5-48), and the result into (5-47) yields the de-
sired relation for B

_ 1 - pf. - p 1 -
B——A-[ZA(I H)+CS]-2(1 H)+cs R (5-49)

In terms of B the linear surface boundary condition and flame temperaturc
equations take the following somewhat simpler forms,
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surface Boundary Condition:

36| _ n .
s-é—‘—lﬂn(g-l)(B——IT%)+(R-1)(1—B+1/A) (5-50)

Flame Temperature:

T T ¢
A
‘ £ =1+:§.?S_ TB[(R-I)—n(E-l)] (5-51)
‘ Tt Ty 7p
) The equivalency of the present linear equations to those used previously
is now relatively easy to establish. Forinstance,equation (5-51) is easily shown
to be identical to the equivalent equation in Reference 1.
J

(1)

. '
. v
. '
'
S
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6. NUMERICAL CONSIDERATIONS
The numerical methods used to solve the equations of motion and their
associated boundary conditions are described herein, as is the numerical technique

utilized in solving for the nonlinear transient burning response of the propellant,

6.1 Finite Difference Method For Sclving The Equations Of Motion

When the method of characteristics was selected as the numerical tech-
nique in Reference 1, the nature of the transient burning rate analysis was unknown,
As is turned out, the need for pressure histories at fixed axial locations was satis-
fied by interpolation and rectification of the characteristics mesh at each time step.
These extra calculations which increase the solution time and adversely affect the
accuracy of the results, are not required if the computations are initially perform-
ed in a rectilinear mesh. Finite difference methods for hyperbolic equations are
normally designed to operate with such a mesh, and, hence, are attractive for
solving the equations of motion. Finite difference methods are also, in general,
more efficient than the method of characteristics,

Shock waves are not usually observed in actual solid rockét motors which
are naturally (spontaneously) unstable, and arc only infrequently observed even
when motors are subjected toartificial pulsing. Thus, shock waves were only a
secondary concern in the present investigation., In the absence of shock waves
the adequacy of the computed results is not critically dependent upon the choice
of finite difference technique, Hence, an intensive cvaluation of the relatively

large number of existing finite difference methods was not carried out,

The available difference techniques can be differentiated on the basis
of accuracy, i.e., first order, second order, third order truncation error; and by
type, i.e., explicit or implicit, Third order methods were not seriously consider-
ed because, for the present problem, their full inherent accuracy cannot be realized
(the transient burning rate calculations cannot be efficiently performed to equilva-
lent accuracy) to offset their added complexity. First order methods were also
eliminated. These methods are the simplest, and are attractive for that reason,
however, second order methods are considerably more accurate, without being

unduly complicated.
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The bulk of our attention was, thus, devoted to second order techniques,

Implicit methods such as those due to Gary(21), Gourlay and Morris(22)

and Mas-
son(23), are more involved, both from a program development, and computational
standpoint, but have the advantage of being unconditionally stable. Explicit
method are simpler, but are subject to the Courant-Friedrichs-Lewy (CFL) stability

criterion given by(24)

(Jul +a)%<1 (6-1) 3

which limits the size of the time step which may be taken. It was declided to go
with explicit methods since their relative simplicity allows one to easily change
from one method to another, This flexibility was deemed to be advantageous since
with nonlinear problems it is impossible to predict, ahead of time, all ot the pit-
falls which may be encountered with a given method.

After conslidering a number of second order explicit methods including
those due to Mc COFmaCk(zs), Lax-Wendroff(26), Rubin and Burstein(27), and

(22) ,(27)

Gourlay and Morris , Rubin and Bursteins method was selected as the

first method to be tried. The Rubin and Burstein technique has performed admir-
ably in the present appli:ation, No numerlcaltproblems attributable to the use
of this method were encountered during the course of this study. As a result
the other methods were never fully evaluated,

In principle, . inite difference methods of the type considered, and select-
ed, are appllicable to flow problems containing shock waves, provided the conser-

vative form of the equations of motion is utilized.* With these methods a shock

wave {s not treated as a discontinuity. Instead, the discontinuous jumps asso-

ciated with the shock front are smeared out over several mesh points., If the shock

*In two phasc flow problems only the gas equations need be integrated in conser-
vatlon form. The particle flow properties are not discontinuous across a shock

wave, hence, the simpler non-conservative particle equations can be utilized,
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wave is too strong, or too few mesh points are employed, spurious oscillations
are observed in the finite difference solutions, especially on the downstream
(high pressure) side of the shock., The magnitude of these spurious oscillations,
for a given shock wave, is quite dependent upon the exact nature of the finite dif-
ference method. One of the reasons for selecting the Rubin and Burstein method
was the authors' contention that their method was superior in that respect. In

many applications(ZS) a so-called "artificial viscosity" is employed in conjunc-

c ST ASPEEE s

K A FLFLE

tion with these finite difference methods. The function of this "artificial viscosity"

" s @ B
a4

- being to damp, or entirely eliminate the spurious oscillations in the vicinity of

- the shock wave., The use of an artificial viscosity would not be appropriate in the
present application, however, since there are real physical dissipative mechanisms
resulting from the interactions between the particles and the gas, Thus, it would
be qulte difficult, in this case, to separate the real and artificial dissipative
effects.

As stated earlier, flows containing shock waves were not the immediate
concern of the present investigation., No direct attempts to calculate such flows
were made during this investigation. Shock waves, accompainled by spurious
oscillations, did appear, by chance, towards the end of some nonlinear particle
damping calculations, however the mesh sizes employed in those calculations was
far too large to expect that a shock wave could be adequatcly treated. Thus, the
ability of the present technique to handle flows containing shock waves has yet

to be adequately tested., If solid rocket motor flows containing shock waves

should become of practical interest, and should the present methoed fail, or be-

‘-

come inordinately inefficient, in such cases, other techniques could be incorpor-
ated into the program.,

The Instability analysis reported in Reference 2 is quite similar to the
present analysis, in most respects, however, the authors were more concerned
about the presence of shock waves and opted to use Moretti's shock tracking
method?‘g)This method results in @ much more comples, and inflexible, code, how-
ever, its success is evidenced by the results achieved (15). A simpler approach
that holds promise of being able to adequately treat shock waves is the flux con-

trolled transport difference method recently developed at NRL(3O) .
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L:: Before presenting the difference equations obtained using the Rubin and
: 'urstein method, it is convenient to first write the equations of motion in short
hand notation.
i
7-:'.'- was Cquations (conservation form)
")
- d3F . 3G
St T3 -2 (6-2)
where F, G, and Z are the following vectors,
- -
pA
F= pud (6-3)
T u?
+ =1 A
°[7 -1 ]
i pul )
L o -
o | o] s
T u?
DUA [-y—l + —2—]
L .
wA
Z = 3%~+A w+Z |F +8 wlu_. -u_)
Y noo1 | Pt 5, Py
" (6-5)
T u? Q
wA| =+ -5)+AT Lyu P+
- 2 t -1 Pj Py
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Particle Equations (non-conservation form)

.

"’
e
l‘.
",
.
f‘
-
i
»

aFi BPi
N =1, . . N (6-6)
where F, and Z, are vectors and A, is a (3x3) matrix,
[~ B
Dpi
F = u (6-7)
1 pi
T
Py
e -l
"4 o o
Pj Py
A = o u o 6-8)
1 pi (
o o uy
. 1 -d
r D’D up dA
i 7i
By w- T dx
Z = -F / (6-9)
! Py ppi
- cp
L Qpi/ b,

The Rubin and Burstein method is a second order predictor-corrector technique,
An unusual characteristic of the method is that the predicted and corrected quan-
tities are both evaluated at the full time step, as shown in Figure 6-1,

The finite difference solution to equation (6-2) is given by

Conservative Difference Eguations

F +F, Z +Z G -G
F 12,k 1=_J_+_1;k ik 4 oay J+1,1§ kL j+l,,\k ey (6-10)
j+ [ + 2 = AX

N
3
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ST W el LS Z 28%
(G 11 /2 x+1” Gj-1/2,k+1)
AX
where a - denotes predicted quantities, k refers to the old time, t, and k+1 is the

advanced time t+At,

, ! |
k+lT_4>_D_J( ) r Q_—‘T_O—‘T_- O Known point

g Predicted point
¢ Corrected point

=2 j=1 j j+1 j+2

.

Figure 6-1. Finite Difference Mesh for Rubin and Burstein Method

The finitc difference solution to equation (6-6) is as follows,

Non-Conservative Difference Equations

F +F z +7
~ hen et E ok 41,k 4k
Fiv1/2 k+1 = 3 t at 5 -

(6-12)

Bt A0 B By oy
2 AX
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Z + 7 (F -F )
_ At 441/2,k+17 4.1 k+1 +1,k” Fj-1
- 4 = L ‘
Fioel = Bt 714 x” B - Ak - '2Axi }
~ ~ (6-13)
(A + A -
j+1/24k+12 1-1/2, 0+ Fra1 /0 ke1” T e
AX

The difference solution to the conservative gas equations (6-10) and

: (6-11), yields values for the conserved quantities given by (6-3)., The usual flow
:f variables are then calculated from these quantities as follows,
",
- F
A u= = (6-14)
1
Fl
0= a (6-15)

F r <
T=y6-1) Ti_ - %(—%} } (6-16)
1

pressure being obtained from the perfect gas law (2-35).

The successive applicatior. of equations (6-10) to (6-16) yields the re- '
quired solution at all mesh points lying between the boundaries of the problem, as i
illustrated in Figure 6-2. 1

There are four types of boundaries that may be encountcred., Left hand

boundary points lccated at the head end of the motor. Interior boundary points, in i
pairs, since these"boundaries" dencte the locations of discontinuities. A gquasi- ‘
steady nozzle boundary point, located at the nozzle entrance, if the quasi-stcady
boundary condition is invoked; or a nozzle exit boundary point, if the solution is

continued out to a supersonic exit plane, The numerical procedures utilized to ob-

tain solutions at these boundary points are presented in the Sections 6.3 and 6.4, ::

6,2 Numerical Stability and Its Influence On Computation Time

(27)

2 AR 2" a® a"a”"_ "

A linear stability analysis of the present finite difference technique
yields the expected Courant stability condition, given by (6-1), for a single phase
system, In nonlinear problems, (6-1) is a necessary, but not sufficient, condition
for stablility., In the solutions obtained to date nonlinear numerical instability

cffects have not been encountoered,
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I'toure 6- 2. Status of Solution After Finite Difference Sweep

For the combined, particle-gas, two phase flow equatiois the CFL con-
dition (6-1) is also necessary, but not sufficient, for stability, A formal stability

analysis of the two phase flow equations has becn carried out in Reference 31.
The particle momentum and energy equations (2-32) and (2-34) can be written in

the form analyzed in Refcrence 31 as follows,
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DT

5 P Qpl

l"_ Dt = - 0 C (6-18)
|

:~: or, using (2-39) and (2-40)

:j‘_ Du (up -u)

- i_ _ i _

i Dt T, (6-19)
- DT (T -1

“ pi pi

= (6-20)

‘,\ r\.{\
g
~

!
!
-3

where Ty! the velocity relaxation time (time interval required for particles to
approach the local gas velocity), is given by,

<A

-
%

of e D"
[
- T = (6-21)
X v Reff73
18L*u*\1+ —

F
L
.
e
Vo
iCs
S

and, T the thermal relaxation time is given by

* g% D*2 cp
afC>m i crr

T = (6-22)
T 6Lwu*(2+.459 Re*>°p 3%

For explicit integration methods,it is shown in Reference 31 that equations
of this type are subject to the conditional stability criterion

At<c1 T {(6-23)

el Bkl

where 4 is a constant depending on the type of explicit method utilized, and 7 is
the time constant for the system., For second order methods, like the present one,

the constant ¢ {s normally about unity, Thus, in addition to the CFL condition k
the present Integration method is subject to the following approximate stability ]
conditions |
:

At< T N

=Ty d

(6-24) :

At < T !-

Pl

i
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One, or the other, of this conditions will be more restrictive, The ratio T,I/Tv is

PR s ey RS S S

N ke 23
::'-v' TT 3CPr(l+ -;6-——)
L= (6-25)
g Ty 24,459 Re" 7P
"
- 3™ In Stokes flow limit.

1§ 1',1,/7'V > ] the momentum equation controls the stability of the sy<tem, or, con-
versely, if T.I/TV< 1 the energy equation is controlling, From (6-21) and (6-22)
it can be secn that, regardless of the controlling equation, the allowable step
size decreases when L* (essentially the length of the motor) and Rei increase,
Our cxperience, to date, indicates that (6-24) is a reliable stability condition for
this problem to within about 10%.

The relative efficfency with which an instability solution may be ob-
tatned is critically dependent upon the stability conditions given by (6-1) and
(“'—24) .

i

Lot: A X the ininimum value of Ax for the mesh

min
Nﬁ\_ = the number of mesh points in the axial direction
NC e = the number.of wave cycles for which the solution is to be
ye c>mputed
mex =  muiximum value of mach number within the flowfield
\tmax = the maximum time step allowed by combined stability con-
ditions

The sound speed does not vary significantly in the motor so {6-1) can

he approximated b

' \X
CrL _ min -
hax (1+Mmax5 (6-26)

sitnce the smollest step 15 likely to be used in the throat region where M \JMmax’

Assuminag \tm % does not vary much with time the total number of mesh point cat-

8]
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\ culations that will be made i(n Ncyc wave cycles is approximately

! N, ~ ? Moy Mmax) Ny (6-27)

:: Tot Axmin

A .

N or, if Ax is constant throughout the mesh,

i N 2 NQYC(HMmaX) (6-28)

:':: Tot AXE

=~ Thus, as a result of the CFL condition, the size of the smallest axial

.. step has a profound influence on the total computation time required to obtain a

‘,'_;- solution. If, uniform axial steps are used (6-28) shows that the computation time

- will quadruple if Ax is reduced by a factor of two. The reason quasi-steady nozzle

':'.: solutions are so much more efficient than solutions continued all the way through

i the throat is quite evident from the relations, In most solid rocket motors the

:'.:: nozzle usually represents, at most, 10% of the total length of the motor. Since

_/ the flow gradients are quite large in the nozzle, especially in the neighborhood

” of th2 throat, the axial step size required to obtain relatively accurate solutions

i tend: to be rather small, Typically, the smallest step size (or step size, if Ax

.-_:: is constant) will be on the order of 1/50 the length of the nozzle, or about 1/500

E the length of the motor, Thus, Axmln ~ ,002 in this case. Even with variable

H'.:j step size NAx will run on the order of 100, and at the throat Mmax =~ 1; so, for
solutions out to the nozzle exit plane, equation (6-27) yields

o

E:: Npop & 200,000 N_ (6-29)

For a quasi-steady nozzle calculation, typically Ax

M << 1. In this case (6-28) yields
max

min= hrX = .02, and

N., .~ S000 N (6-30)
Tot cyc

h . 'a)-'m'

v

Or, in other words, the solution time for the equations of motion is roughly about
40 times faster when the quasi-steady nozzle assumption is utilized. In calcula-
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u ting the steady state solution for a motor only the equations of motion are solved,

so this factor of 40 is representative of the relative times required to obtain the

:’: two types of solutions. In the instability solution, itself, much of the computa-
t‘« tion time is devoted to solving the transient burning rate equations at a series of
:2: mesh points, The total computation time for the burning rate solutions tends to
o run about 2 times that required for solving the quasi-steady nozzle fluidynamic
I problem. As a result, instability solutions carried through the throat take about

Ny

15 times longer than the equivalent quasi-steady nozzle solution.

Equations (6-26) to (6-28) represent the results imposed by the CFL
stability condition. The two-phase numerical stability criteria (6-24) must also
be satisfied. If

T, Axmin
IT:M'_)
or (6-31)

Axm.m

T <(1+M ")

the maximum allowable time step is less than that given by (6-26) and the total
number of mesh points to be calculated per cycle will increase, Forinstance,

if either of the relations (6-31) is true, and the particle size is halved, the solu-
tion time for the equations of motion will quadruple.

Assuming for the moment that 7 <7, (see (6-25)), and taking typical
numbers for af (4000 ft/sec), 0¥ (7.76 slugs/ft®), and u* (1.85)(10“6 lb. sec/ft?),
equation (6-21) is, approximately (for Rei <<1)

. OID? (microns)
v T+ (1) (6-32)

The ratio of (6-32) to (6-26) determines which stability condition is controlling
the maximum allowable time step.

T L01(1+M ) D (microns)
v max i (6-33)
AtCFL -~ Ax . L*(teet)
max min
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Figure 6-3. Stability Limiting Particle Size
Versus Motor Lenqgth
Figure {6-3) shows the particle size, D, , at which the allowable

limit
step size begins to be controlled by the two phase stability conditions, as a func-

tion of motor length. and M for
min max

typical full and quasl-steady nozzle calculations were utilized. For particle
slzes below D

The previously mentioned values of Ax

{ the allowable step size will decrease as the particle size
limit

squared,

Max. time step when Di < Di
limit
D 2
_ ,CFL i _
Atmax B Atmax Di (6-34)
limi

For example, from Figure (6-3) and equation (6-34) one finds that for
a quasi-steady nozzle solution in an 8 foot motor with 2 y particles, the allowable

At s one-quarter the CFL limiting time step; or in 8 100 foot motor with 2 W particles
CFL
At

max 'Btma
step 1s so small the two phase stability limit is of much less importance, TFor-

instance, Mmax for full nozzle solutions is not influenced by the particles until

50, When full nozzle solutions are calculated the CFL limiting time
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the motor «..ceeds about 100 feet in length for 3 4 particles and 40 feet in length

e &

[or 2 y4 particles.

PLI
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When an explicit finite difference method was selected for use in the

T a
2oty

instability solution the ramifications of the aforementioned stability conditions

were not fully appreciated, As a result of the previous discussion it is evident

that solutions continued through the throat, or solutions for large motors with

small particles, could be obtained much more efficiently with an implicit finite

¢ V¥V ¥ ¥ @
e

. difference method. Implicit methods are unconditionally stable, hence, the size

e

of the Integration time step is governed solely by truncation error considerations.,

6.3 Head-End and Nozzle Boundaries

It is possible to postulate a large number of numerical techniques by

-

= which solutions may be obtained at the boundaries. These include various types
r of extrapolation and one sided differences, as well as the method of characteris~
E_, tics, As discussed in Reference 32, the method of characteristics is the prefered
: method for handling the boundary conditions. It is more accurate and general than

the other techniques, ‘mainly due to its uniquéness and consistency. By uniqueness
it s meant that when treated by the method of characteristics the number of avail-
able equations at a boundary point is exactly equal to the number of unknowns.
When extrapolation or onc-sided differences are employed the number of available
equations becomes redundant, i.e. there are more equations to choose from than
there are unknowns. The solution at the boundary is, therefore, not unique, but

is dependent upon which of the available equations is arbitrarily dropped.

The other factor, consistency, refers to whether or not the numerical
method implies a violation of the signaling, or information transfer rules, for a
compressible flow, By definition the method of characteristics is consistent, as
information is carried through the flow along the characteristics, The other methods
are inconsistent, to varying degrecs. The chief virtue of one side:d differences,
and, cspeclally extrapolation, is simplicity. Conversely, the only drawback to

the method of characteristics is the additional analysis and programming required

to irrplement it. In many cares, despite their redundancy snd inconsistences,
one sided differences and/or extrapolation can yield acceptable results, In such

cases their simplicity warrants their use. In other cases, the mcthod of character-
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istics must be utilized tc obtain acceptable boundary point sclutions,

In the present problem the only boundary at which a non-characteristic
method is completely acceptable is the supersonic exit plane, At thls boundary
there is essentially no back information transfer to the domain of interest, hence,
errors made at this point do not measurably influence the computation. One sided
differences are currently employed to compute points at the nozzle exit, At the
head-end, closed boundary, one sided differences are better than extrapolation,
but not completely acceptable, so the method of characteristics is utilized, At
the interior boundary points, discussed in Section 6.4, both extrapolation and
one sided differences are numerically unstable, The method of characteristics,

however, yields stable and accurate solutions at these points,

Head-End, No End Buming

As previously mentioned the method of characteristics is utilized at
this boundary. Curently, a first-order solution is obtained using simple Euler
integration along the characteristics. Second order solutions could (and possibly
should) be easily obtained by using modified Euler integration. The boundary con-

ditions at this boundary are, from equation (3-15), u=u_ = 0.

i
The finite difference form of the characteristics equations (2-41) to

(2-48) are used in the manner (llustrated in Figure 6-4, in order to obta'n a solution
at the left boundary. The solution is known at points ! end 2 at time equal t, and
is sought at point 3, at time equatt + At. Point 1'represents the location where
the left running characteristic through point 3 crosscs the line time =t, As a re-
sult of the CFL stability condition (6-1), point 1' must be between points 1 and 2,
On the first iteration the velocity, Uy, and sound speed, al.,are set equal to the
respective quantities at point 1, The first step in the solution is to locate point

1' using (2-41) for a left running characteristic (minus sign).

xll = xl - (ull - al') At (5"35)

All of the flow and geometrical properties at point 1' are then established by lincar

Interpolation. The pressure at point 3 is then found from the compatibllity relatlon
(2-42) as
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P3 = Pl' +¥0,49y, (RHS At + Uy = ul,) (6-36)

where u3=0, as a result of the boundary condition, and RHS  is equal to the right
hand side of {2-42) evaluated at point 1',

When there is no end burning the line x=0 is a streamline, and if par-

ticles are present, a particle path line. The temperature at point 3 is then found
from (2-44) as

_ 1 v=1_ - -
T3 =T, + > [RHS At + ( > )(P3 Pz)] (6-37)

where RHS is equal to the right hand side of (2-44) evaluated at point 2. If there

are particles present up . Tp and °p are calculated from (2-46), (2-47) and (2-48),
respectively, ! i !

F
By
2
u =u_ - At (6-38)
pi3 piz Pj
. A2
Qpiz
T =T - At (7-39
pi pi Co )
3 2 12
u - u
i Pl JA
- — e e . 1 i-— -
o, =0, 8w, Py (——=% )+Jp. dx|2 At (6-40)
13 12 12 1 2 12

At thls point the density at point 3, Py is found from the perfect gas law (2-35)
and the whole solutioun is reiterated startin¢g with the newly calculated values of
ay and Uy (Note: this iteration does not iriprove the theoretical accuracy of the
calculation, it remains first order; however, it |s found that, {n practice, better
results are achlaved), At the conclusion of ‘he boundary point solution the con-

served F quantities, defined by (6-3) are calculated, for use In the next finite
difference integration step.
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Head-End, End Burning

The method of characteristics solution at the head end, when there {s
end burning, is at once, simpler, yet more complex, than its lnert counterpart,.
(See Figure 6-5), The solution is the same up to the equation for P3, (6-36).

BN SOOIV (N mda Al [N

When thLere is end Lurning Uy equals the velocity of the gases leaving the surface,
Ug. At this point, the boundary conditions (3-16) that need be applied yield the
o values for the remaining variables,

T3 = Tf (6~41) up. = ug (6-42)
i
3
Tpi = Tf (6-43) op1 =ﬂip3 (6-44)
3 3
7€
Zn
Zk
/ § At
:
21
2 1 1 1! 1
‘-‘-— AX —
Figure 6-4. Characteristics Mesh at Figure 6-5. Characteristic Mesh at
Left Boundary--No End Left Boundary--End Burning

Burning

The potential complexity derives from the fact that the properties of the
combustion gases leaving the surface, U, Tf etc. depend upon the pressure, PB'
and vice-versa. When such coupling exists, solutions may be obtained by itera-
tion, or, as in the present case, by making a simplifiying assumption, Currently,
the calculation is uncoupled by replacing that the properties of the combustion

products leaving the surface at t + At by their counterparts at time = t,
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uasi-Stcady Nozzle Boundary

When the nozzle is treated in a quasi~steady manner the right hand
boundary 1s treated in much the same manner as the head end. In this case, how-
ever, the left running characteristic is the missing one, and the boundary condi-
tion fixes the mach number at the nozzle entrance such that the flow will choke at
the throat. Another difference at the right boundary is that the streamlines and
particle paths through point 3 are not known, a priori, as they are at the head end.

The points and characteristics used In the right hand boundary point
solution are shown {n Flgure 6-6.

1

At

Ax

-

Figure 6-6. Characteristics Mesh at Quasi-Steady
Noz. 'e Boundary

Point 1' is located by tracing the right running characteristic through
point 3 back to time = t.

X)) =X, - (ul, + al.) At (6-45)

On the first (teration only Uy, and a;, are set equal to Uy and 3y respectively.
The low and geometrical properties at polnt 1' are established by linear interpo-
latton,; The pressure at point 3 can then be found from the compatibility relation
for a right running characteristic equation (2-42)' (plus sign).
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+
P3 = Pl' +'yp1,al, (RHS at - U, + ul,) (6-46)

I S
et

where RHS+ is equal to the right hand side of (2-42) evaluated at point 1'. The

veloclty at point 3, Us, is taken to be equal to u, on the first iteration, thereafter,

R R

ug is found from the mach number boundary condition, once T3 has been established.

-
[ 4

The temperature at point 3 is found using the streamline characteristic
(2-43). Point 4 is located as

u Xy =Xy - U, At (6-47)

The other properties at point 4 are found by linear interpolation, T3 can be cal-
E culated from (2-44) as

X = y-1 - A -
N T3 T4+[RHSAt+( 5 )(P3 P4)] > (6-48)

where RHS is equal to the right hand side of (2-44) evaluated at point 4. The sound

,j: speed at point 3 is then
1/2
az =| T, (6-49)

> ¥ v
J ;oo

;.: The boundary condition, and perfect gas law then yield, respectively,

’.
u3 = a3 Me (6"50)
04 = P3/T3 (6-51)

L
v
¥

If particles are npresent,point 5 is then located using the equation for a particle
pathline (2-45)

Xg = X, = Ug At (6-52)
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The quantitiesu_ , T and pp may then be found from the compatibility rela-

iy Py X!
tions (2-46) to (2-48) in the manner indicated in (6-38) to (6-40), by replacing

o . ¢

point 2 with point 5. The discussion given after equation (6-40) is, again, per-
tinent at this point.

supersonic Nozzle Exit Boundary

As Indicated previously, no boundary conditions need be satisfied at
this point. The equations of motlon are integrated at this boundary using a one
='ded, secend erder, difference approximatlion for the x derivatives.

P Y EYEEE TS R

Let y stand
for any quantity, then the derivative at the boundary is given by
3y, -4y, _, ty
) QL = 1 i‘l i—z -
] 3% i A% (6-53)

EAAA SRR Mk ik St

The relation assumes that the axial step size Ax Is constant. The gas properties
are found by integrating the equation in conservation form (6-2) as follows

F, (t+at) = F (t) + (z (t) - af\i) At (6-54)

The solution for the j th particle group is found by integrating (6-6)

dF

By jlerat) = B0+ (2 @0 - A ) at

y .1 3% 1 j=1l...N (6-55)
14

The time intesgrations in (6-54) and (6-55) are accurate only to first order., The x
derivatives in these equations are evaluated using (6-53).

N 6.4 Interior Boundary Points

N

g

_. As discussed in Section 2.5, Interior boundary points are located at
E axial stations corresponding to gaps in the grain. At these locations the burning

rate and area may be discontinuous, therefore, the jump equations (2-49) to (2-55)

are required In to obtain a solution at such points. An alternative use of interior

boundaries is to separate regions of different step size, The axial step size must
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be constant within each region, but may vary from region to region. If the axial
gradients are much larger in a given section of the motor (usually the throat sec-
tion) than elsewhere, the section may be treated as a special region with corres-
pondingly smaller axial steps, This is somewhat more efficient than using the
smaller steps throughout the motor, however, as discussed in Section 6.2, the
overall efficiency of the calculation is mainly controlled by the size of the smal-
lest step. If an interior boundary is created as a means of changing step size
alone, the solution procedure outlined below reduces to the normal method of char-

acteristics field point solution; the jump equations are trivial (no jump) in such
cases.

An interior boundary point is really two points, one on each side of the
discontinuity. The method of characteristics, in conjuction with the jump equations,
is used to obtain solutions at these points.

At a general interior boundary point the unknowns are p, u, T, P, w,
ppl, upi and Tpi on both sides of the boundary. If there are N particle groups the
total number of unknowns is equal to 10+6N. The same number of equations must
be avallable if there is to be a uniq'ue solution, There are 3+N characteristic lines
which intersect the boundary, along which there are 3+3N compatibility relations
(the particle pathline is a triple characteristic, given the quasi-characteristic
form of the particle continuity equation). An additional 3+3N equations come from
conservation of mass, momentum and energy for the gas and particles (jump equa-
tions). The remaining four equations are the perfect gas law and the heat conduction

equation (for w), on both sides of the boundary (wWmay be zero on one or both sides
of the boundary).

Unlike the simpler head-end and quasi~steady boundaries, many dif-
ferent flow situations may exist at an interior boundary. The number of situations
being a function of the number of particle groups., Figure 6-7 illustrates the four
characteristic diagrams that are possible when there is one particle group, There
is always one left running and one right running characteristic intersecting the
boundary as shown. The differences are created by the signs of the gas and par-
ticle velocities, If the velocities are positive the streamline or pathlines carry
information from the left side to the boundary, and if the velocities are negative,
the directions of these characteristics is reversed., Since, in general, the par-
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Figure 6-7. Four Possible Characteristic Diagrams at an
Interior Boundary, With One Particle Group
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ticle velocity may lead or lag that of the gas, the gas may be moving in one dir-
ection and the particles in the other direction.

S N A S

A general solution to the interior boundary problem has been formulated,
however, which allows all of the possible flow configurations to be treated in a

unified manner, The unified jump equations, and their solution, are presented
i first, following by a discussion of the overall solution procedure.

Unified Gas Jump Eguations

(S
l Equations (2-49) to (2-51) may be rewritten in the following general man-

ner, so that they apply to all possible geometric and fiow situations. The follow-
ing definitions are made:

1 subscript denotes the point on the left side of the boundary,

2 subscript denotes the point on the right side of the boundary.

A
. = =2 = pl= -
for u,20 Let: s=1, AR_Al . =1, j+1=2 (6-56)
Al
for u15_0_ Let: s=-1, AR=7\2_’ =2, j+1=1 (6-57)
forApz1 Let: a=0, b=1 (6-58) ;
J
i
for Ap<1l Let: a=1, b=0 (6-59) d
. 4
The general forms of (2-49) to (2-51) may then be written as follows, (using m= 5
pud, and P=pT). .
Mass: my+tsm,=m, (6-60) I
<
m, T m,, T (6-61) :
. i a_ > . - j+17j+1, 1 . .
Momentum: ( 0,7 ) Ap + my U+ smy use ( TRy )Ab LTSI \
R
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Equations (6-60) to (6-62) can be directly solved for the quantities at j+1. The

solution is

.'j"'l = rﬁj +s rﬁe (6-63)
. 1/2
o —[a2 - 4(1-K/2)K 8m +1]
Uyyp = . ] (6-64)
(2-K) m
u®
T4y = v-1) (—;ﬁ- - —12"'—1) (6-65)
My
Mo
Py = (6-66)
j+1 uj+1Aj+1

where the following quantities are definedJr

m, T . .
o= ——d A%+ u +sm_u (6-67)
uj'y R i i e s,
T
T u® f
=m. (=L S -
B=rm, (- + ) +sm, 571 (6-68)
K= y-1y 1 -
( 5 ) T\E (6-69)

Unificd Particle Jump Equations

The general particles jump equations are more easily solved, With the
following definitlons

u -0 s =1 j=1,ij+1=2 (6-70)

'The definitions given for o, 8, and K apply only to this analysis, they have other
meanings clsewhere,
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<0 s = -1 j=2,j+1=1 (6-70)

the general forms of (2-53) to (2-55) can be directly solved for the variables at
j+1. The solution is

N0 MOORRRRY sl

b, = mpi + s Bi m, (6-71)
j+l j
mp u +s8 m_u
i i S,
il i,
up = - (6-72)
- i m
e i+l P,
I i+l
::.' * C 1 2 o C
mpi (_;—_-TTPI + -*-z—upl) + SBi me-)—/_-—lTse
o=t I -2u? 6-73)
Py m Pi
j+1 pij . j+1
+
m
o pi'-f-.l.
T e 57
¥l Tpy It .
j+i

General Boundary Point Solution

The general solution at an interior boundary is obtained by combining
the method of characteristics with the jump solutions previously given. The char-
acteristics solution is carried out using back values at time = t.only, hence, i:
is a first order solution. With a first order method the solutions for the gas and
particles may be uncoupled. In the present case the solution for the gas phase is

obtained first, There is a problem with regard to the evaluation of rﬁe, Ug and
e
Tf w~hen uninhibited end buming takes place at an interior boundary. The flow
e

in the neighborhood of a gap in the grain is subject to both two dimensional and
viscous effects, It is, thus, difficult to characterize the pressure on the end
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bumina {ace in a one-dimensional, inviscid, model, Here again, an assumption
has to be made, Presently, for the purpose of calculating burning rate only, it is
assumed that the pressurc on the burning face is equal to the pressure at the end
point of the adjacent lateral buming surface, For the example shown in Figure

6-8 the pressure on the end face is assumed to be P the pressure at Point A.

1'
It is further assumed that since Pface=P1’ the burning rate and flame temperature
solutions at point A can be used to characterize rﬁe, Ug and Tf . This assump-

e e
tion neglects any difference in erosive effects between the two locations, These

aforementioned assumptions were not necessary, but they are reasonable, and
dllow a solution to be obtained more conveniently, Should it prove to be warrant-

ed, other treatments of the uninhibited end burning can be considered.

Uninhibited

End Faces

Lateral P,, A,, etc. PZ‘ A2’ etc.
Surface ¢

Burn Rates of Uninhibited End Faces Assumed Equal
to Burn Rates at Respective "A" Points

Figare 6-8. Uninhibited End Burning Model

A solution for the gas phase may be directly obtained by solving the
complete set of nonlinear algebralc equations generated by the combination of the

jump equations, (6-60) to (6-62), and the characteristic compatibility relations.
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This approach yields the solution on both sides of the boundary by simultaneously
solving all of the equations numerically. A means of utilizing the closed form
solution of the jump equations, given by (6-63) to (6-66), has been developed,
however, obviating the need for a numerical solution of these nonlinear algebraic
equations., The closed form gas jump solutions yield all of the gas varlables on
one side of the boundary when all of these variables are known on the other side.
Unfortunately, the characteristics equations do not allow all of the gas properties

I AAARARSS g Xad g i Lol

r
s
. s

on one side of the boundary to be calculated directly. As shown in Figure 6-7

A‘-’-,‘ "

there are always two gas characteristics on one side of the boundary, and one

i characteristic on the other side. Therefore, an indirect, iterative, approach has
s been developed. First, the side on which there are two characteristics is deter-
-'.:j mined from the sign of the gas velocity at time t. An initial estimate of the velo-

city bn this side of the boundary, at time t+At, is then obtained by three point
extrapolation, Between the veloclty estimate a..d the two characteristic equations
there 1s enough information to calculate all of the gas properties on one side. The
jump equation solutions are then utilized to calculate the properties on the other
side of the boundary. These gas properties must satisfy the remaining character-
istic relation, to within a specified tolerance in order to claim a compléte solution,
In general, this characteristic relation will not be satisfled by the solution ob-
tained using the first estimated velocity. The initial velocity estimate is then
varied, and the solution repeated, until the remaining characteristic relation is
satisfled. A modified secant technique is used in order to speed the convergence
of this {terative procedure, The details of this procedure are given below.

Figure 6-9 shows the two posslible situations which may be encountered
at an interior boundary located at the j th mesh point. If the gas velocity is posi-
tive there are two characteristics on the left side. If the velocity is negative the
streamline intersects the boundary from the right side. By defining the following
quatities a single characteristic solution can be nade to apply to both cases.

gj_’_p_ Let: 1 subscripts denote point J-1
2 subscripts denote point j at time =t
2p subscripts denote point j+1
1p subscripts denote point j+2
3 subscripts denot point j at time = t+At

3p subscripts denote point j+1

s =1
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u.<0 Let: 1 subscripts denote point j+2
) 2 subscripts denote point j+1

1p subscripts denote point j-1 at time =t
2p subscripts denote point j (6-75)
3 subscripts denote point j+1 at time = t+at

3p subscripts denote point j§
s =-1

The vatue of Uy is obtained by extrapolation from the adjacent interior
points previously obtalned using the finite differece technique. The pressure and
temperature at point 3 are then obtained in the manner shown for the quasi-steady
nozzle boundary, but with a slightly generalized form of the characteristics equa-
. tions. An explanation of the characteristic solution procedure may be found in
',“_ Section 6.3. Only the final equations which differ from those used at the nozzle

boundary are given here,

X)) = Xq = (u1.+al.s) At (6-76)

- (s) _
P3 =P +yo 137 RHS™  at - s (u3 ul,) (6-77)

where RHS(S) is equal to the right hand side of (2-42) evaluated at point 1' with
the + slgns evaluated according to the sign of s. The temperature at point 3 is
found using (6-47) and (6-48). Density and sound speed are calculated from
(6-49) and (6-51), respectively,

A rclation to be used after the jump equations are solved to check the
validity of the interior boundary calculation is then obtained from the compatibi-
lity relation along the remaining characteristic. Without going into all of the de-
tails, the relation is,

P, =c.+c,u (6-783)

3p 1 2

whcere <, and c, are constants which depend on the values of the yas parameters

at point lp'.

With Ug ,P3 ,T3 and 0, ,2s obtained above, eqations (6-63) to (6-66)

are used to calculate u, , P, , T, and

3p’ "3p’ ‘3p 23p (one should equate 3 here, with j in
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Figure 6-9. Gas Phase Characteristics Solution
at Interior Boundary

the jump equations, and 3p should be equated to j+1), The values of u3p and,P3p ,
so obtained, are checked to see {f they satisfy (6-78), If

P, - ) u3p < specified tolerance

a solution has been achieved. If not, a new value for Uy is selected and the pro-
cedure s repeated.

The particle solution at the interior boundary points is obtained after
the gas solution is completed. Since the particle pathline is treated as & triple

characteristic up . Tp and pp can be directly obtained on the sfd= of the boundary
i i i
which the pathline intersects, If the definitions given by (6-75) are made for

u 20 and up <0, the equations used to calculate the particle solution at & quasi-
i i
steady nozzle boundary point can be utilized directly to solve for the partizle vari-

ables on the side of the boundary where the pathline i3 loc:ted. The generalized
solution for the particle jump equations, equations (6-71) w (6-74), then yields
the particle solution on the other side of the boundary,

6.5 Transient Buming Rate Solution

The nonlinear transient burning rate response is obtained by solving
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i',-» nondinensional heat conduction equation (5-23), subject to the boundary con-
ditions (5-24) at £=», and (5-25) at the burmning surface. The steady state solu-
tion, usced as an initlal condition, is given by (5-31). Once the burning rate has
been found, the flame temperature is calculated from (5-37). Alternately, lincar
transient burning rate solutions may be obtained by using (5-43), (5-50) and (5-51)
in place of (5-23), (5-25) and (5-37).

Transformed Equations

CRANUPP, N uf W el aF A 2 e it

The temperature gradients in the solid are greatest at the surface and
decay exponentially with distance into the solid. For this reason it desirable to
transform to a coordinate system in which constant increments in the transformed
plane correspond to small increments near the surface and larger ones as depth

increases in the physical coordinate, Also, the boundary condition
Os =0atf=-= (6-79)

could be applied at a large but, finite value of §£. However, it is possible to find

a transformation that has the previous characteristic and also maps £ = -®to a
finite value, There are many possible transformations, the one selected is actually
a restricted form of what is known as the "Euler" transformation

Z= a—:%— « = const, (6-80)

The interval £=0 -+ -« js transformed to Z=0+1, The inverse of the transformation
is

€=(2_—15 (6-81)
Also,
_dz_ =7'= _(2_1)2
d =~ o
&’z _ . _ 2(z-1)°
3= Z" = = (6-82)
¥
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In order to transform the differential equations the following relations are needed:

3 _ o5 O
3 "% 3z
\2 \ \2 (6-83)
- " 12
362-%" 37 T4 sz

Using (6-83), the nonlinear equation (5-23), and linear equation (5-43), become

-]
Nonlinear: :f + (RZ' - 2") g—g— - 2'% 13-2-9- =0 (6-84)
Linear: 28 4 (2 -z 29 - 72 aze ~(R-1)ef (6-85)
at 37

The transformed boundary conditions are

6=0atZ=1 (6-86)
and,

36 1 _

Zl = Z70) ?F‘ (6-87)

where'%g-l _ is given by (5-25) and (5-50) for the nonlinear and linear models, re-
spectively. The steady state solution, (5-31), may be written as

Gftv___o = eé: = exp [%—%1] (6-88)

Finite Difference Solution

Equations (6-84) and (6-85), subject to the boundary conditions (6-86)
and (6-87), and the initial cordition (6-88) are solved using the Crank-Nicolson
finite difference scheme., A network of mesh points is created as shown in Figure
6-10,

With the Crank-Nicolson method the derivatives and coefficients in the
differential equation are evaluated at the midpoint m+l/2, n+1/2, The resulting
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@® Known Point

N

O Unknown Point

X Equation Evaluated

Figure 6-10. Finite Difference Mesh

solutions are accurate to second order. For nonlinear problems the difference equa-
tions are normally linearized, enabling a solution to be achieved by solving a coupl-
ed set of linear, rather than nonlinear, algebraic equations, In such cases, one
fteration must be performed to regain secona order accuracy., The following repre-
sentations of the derlvatives are used:

® -8 ) (6 y )
3322= 1/2 [(em‘n-’-l-zean".em:n-l) +
) Y+ (6-90)

(6m+1 ,n+1— 2 6m+1 n+ 6m+1 n- 1)
A
8 -6
%= m+1Ln~ m,n (6-91)
at At

From this point on only the equations for the nonlinear solution are presented, the
linear equation follow from similar considerations. After replacing all of the deri-
vatives In (6-84) by their central difference analogs, (6-89) to (6-91), the follow-
ing set of difference equations is obtained
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] -6
m+l,n m,nh 1
L ~— + (R Z' -2") —— (8 + 8 - -
AT m+1/2"n n’ 4pa2 ( zm,n m+1,n+l 9m+1,n—1)
- (6-92)
n
Vil (ezzm O, 1 20me1, 0t Bpey 0 =0
n=2,3,...N-1 1 = surface
N = backwall
where:
8 =8 -8
zm,n m,n+l m,n~1
(6-93)
6ZZ n = 6m,n+1 - 26m,n * em,n-l

after collecting terms (6-92) can be written in the condensed form

An em+1,n-1 * B em+1,n * Cn em+1,n+1 =D, n=2...N-1 (6-94)

where

A = -(bn+en) B = 1+2en cn =b -e

n
Dn= em,n- bn eZ + en eZZ (6-95)
m,n mln
~ z.aA'E-'
b = (R [ Z") ot e = I :
n m+1/2 “n n’ 4AZ n_ 20%

Once the boundary conditions have been applied, (6-94) yields a set of N-2, tri-

diagonal, linear algebraic equations, which may be efficiently solved using a sim-

ple Gausslan elimination algorithm. To reduce equations (6-94) to tridiagonal form

the boundary conditions at 2=0 and Z=1 must be used to evaluate the terms

Ay 841,120 Ony Oy, N (6-96)
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The backwall boundary condition (6-86) gives 6m+1, N~0. The surface boundary
condition is nonlinear and may be treated in numerous ways. The method currently
being used iteratively selects values for 8m+1 1 until the derivative at the surface
given by (6-87) is equal to the calculated derivative, to within a specified tolerance.
The calculated surface derivative is evaluated using a four point formula

96 +28

29 118y 180 2790 p 3128 )
3zlz=0 = 6AZ (6-97)

The solution to the set of equations, (6-94), provides values for the
nondimensional temperature, 9, at each mesh point. The temperature at the sur-
face, es=91, together with the local pressure, determine the burning rate through
(5-30). The transient flame temperature i{s then obtained from (5-37).

The solution procedure, as given, assumes that the local pressure at
the buming surface is known. In reality, however, the local pressure depends
on the burning rate, In order to avoid a simultaneous, iterative, solution of the
combined flow and burning rate equations, the equations of motion are solved
using burning rate values obtained by linear extrapolation from previously calcu-
lated values. The pressure can then be assumed to be known, as required by the
above analysis. This procedure for uncoupling the buming rate calculation from
the fluld mechanics appears to work satisfactorily,

Burning Rate Interpolation

As discussed in Sectlon 5, transient bumning rate solutions are not ob-
tained at each mesh point. Instead, within each burning region, bum rate solu-
tions are calculated only at every n th mesh point, The buming rates at interme-
diate mesh points are found by interpolation. This procedure was instituted in
order to economize on the amount of computer time devoted to solving the heat con-
duction equation, If burning rate solutions were obtained at each x location, every
time step, the total computation time for these solutions would be more than ten
times that required to solve the equations of motion, By using high order methods

the error made in the interpolation procedure can be kept within quite reasonable
bounds,
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The waveform of the buming rate in the chamber tends to be smooth and
harmonic, since the burning surface does not respond instantaneously to disturbanccs.
The burning rate response to the fundamental pressure mode generates axial burn-
ing rate waveforms which typically vary as cos{rx). In order to obtain quantita-
tive estimates of the error introduced by the interpolation procedure a short study
was carried out, Three different interpolation methods were investigated:

1, Linear interpolation

v
Wt

2. TFive point overlapping parabolic interpolation

3. Overlapping spline fit coupled with cubic interpolation
For equally spaced points method (1) is first order, method (2) third order and method
(3) fourth order, The results of a comparison of the three methods applied to the

. v
A
?

curve y=, lcos(mx) are briefly summarized in the following table.

Number of points at which function was specified

Method 26 13 7

Approximate Average Relative Error in %

Linear 2 .75 3.0
Aver. Parab. 6x10” 2 015 .3
Spline-Cubic 6x10° .002 -2

The exact value of the function was specified at either 26, 13, or 7 points, Each
method was then used to find the velue of the function at 51 equally spaced points.
The relative percentage error at each point was then computed. The average errors
shown in the table are approximate, but are adequate for qualitative purposes., It
is evident from the table that the higher order methods as expected, are consider-
ably more accurate than linear interpolation., It is also evident that when high
order methods are used the spacing between burning rate solutions can be relative-
ly large, The results indicate that if burning rate solutions are obtained at every
seventh mesh point, the resulting interpolation need not generate errors of more
than a few tenths of a percent. The accuracy of the finite difference solutions to
the equations of motion and heat conduction equation, with the normal range of

step sizes, is typically of the same order. Thus, the interpolation procedure can
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1+ luce the computation time for the burning rate solutions by a factor of five, or

. more, without significantly affecting the overall accuracy of the total instability

-, solution. The second method, 5 point averaged parabolic interpolation, is the
one currently utilized.
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N NOMENCLATURE

A A - cross section area, or transient burning rate parameter
Ae - area at nozzle entrance
:! ; At - throat area
a - gas only, sound speed

‘;".2‘ ay - sound speed based on Pf and Tf

'.;: B - transient burning rate parameter, Eq. (5-49)
\ BS - constant in Arrhenius pyrolysis law, Eq. (5-16)

g c - ratio of particle to gas specific heats, cm/cp
;.- c - constant in steady state burn rate, Eq. (2-14)
y - particle drag coefficient

Ny ) -  erosive burning constant, Eq. (2-14)
- c -  specific heat of metal oxide
\:: Cp - specific heat of gas at constant pressure

Cq - specific heat of solid propellant

,_£‘ D, - diameter of the i th particle group

' Dp - port diameter

. E -~ normalized surface activation enérgy, E /R T ,
_:f{ also used differently in Eq. (3-19)

1 ES - activation energy of surface reactions

" F - conserved quantities, Eq. (6-3)

’ I - particle-gas interaction force per unit volume,
P for the ith particle group, Eq. (2-18)

:_'_:'_ G - conserved quantities, Eq. ()-4)

'_,:: I - nondimensional surface heat release parameter, Eq. (5-28)
< Ah - heat of formation at 0°K

B h 2 - cnthalpy

K - fractional lug constant

::'_: v - thermal conductivity

= : I - referenc - length

o ¢ - perimeter of the qrain

\ M - mach number

x' M - mach number of "equivalent” perfect gas

o

N a7




M mach number at nozzle entrance

m - mass flux from burning surface

;He - mass flux from uninhibited end buming faces
N - number of particle groups

Nu - Nusselt number

=
|

pressure exponent in steady state burn rate law

- exponent of pressure dependence of surface reaction rate,
Eq. (5~16)

- pressure

P - nondimensional pressure, Eq. (5-22)

Pf - chamber pressure

Pref - reference pressure in steady state burn rate law
Pr - Prandtl number

Qf - heat release, per unit mass, in flame
Q - particle gas heat transfer rate per unit volume, for
By the i th particle group

Qs - net heat of reaction for processes at burning surface,
Eq. (5-5)

QS - surface heat of reaction at Ts' Eq. (5-6)

R -  gas constant ’

RO - universal gas constant

Rei - Reynolds number for the i th particle group, based on
particle diameter, and particle gas relative velocity

RHS - right hand side of characteristic compatibility relations

r - linear burn rate

Sb - total area of burning surface
s - equal to +1
- temperature
Tf - flame temperature of the propellant

v3
)

reference temperature in viscosity law

- temperature at the propellant surface

n O

backwall temperature of the propellant

[ T
8
|

- time
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3 -  nondimensional time, Eq. (5-22)

u - velocity
:'_' ug - velocity of the combustion products as they enter the main flow
E:: uSll - axial component of ug
- 7 - gas reaction rate times gas density

- axial distance

- location of head end

g ‘D - axial location at which initial perturbation terminates
. 2 - transformed depth coordinate in heat transfer solution,
s Eq. (6-80), also terms in conservative equations, Eq. (6-5)
@ - growth constant, also used as a constant in coordinate
- transformation, Eq. (6-80)
o -  particle damping constant
- 2 - total particle to gas weight flow ratio, € Bi
_ B - particle to gas weight flow ratio of i th particle group
,j-j Y - gas only isentropic exponent
. v - isentropic exponent for "equivalent" perfect gas, Eq. (3-17)
:j'- ) - angle with respect to axial direction, or nondimensional
temperature, Eq. (5-22)
o X - thermal diffusivity.
: - defined by Eq. (5-48)
- “ - viscosity
F - nondimensional depth coordinate, rx/x
- o} - density
» Ty - characteristic relaxation time for particle velocity, Eq. (6-21)
:::' T - characteristic relaxation time for particle temperature, (Eq. 6-22)
. 9! - nendimensional frequency, wx/T°
W - mass burning rate, per unit length, per unit cross sectional area
;'".: W, - power in viscosity vs temperature law
-
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Subscripts

- flame

.
A vy

= gas

o‘:‘.)

i th particle group

>

- at the burning surface

5{.'.1

!

z

- at the nozzle throat

WA SN

Superscripts

()* - denotes a dimensional variable

() - denotes a small perturbation

i o

S e, 4 N

“
‘

(_) - denotes steady state value, except in Sections 3 and 4
where used to denote equivalent gas value

ALY

D
s

O* - right running characteristic

‘a Tl
T
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()~ - left running characteristic

O
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APPENDIX 2

%
a,

The one-dimensional, Eulerian form of the equations of gas dynamics for an

Ao

inviscid, non-heat conducting fluid in cartesian coordinates may be written in the

[

L0

following conservative vectorized form:

’
B

u, +FW_ =0,

o p m
U={m and F(U) =I-(m2/p) + p 0
' e [}m/o)(e +p)
v
;:; where e, the energy per unit volume is e =pe +% pu’,
- and €, the internal energy per unit mass, is ¢ = p
- (y-1)p
:‘. Equation (1) is solved using the Lax-Wendroff + Hybrid + Artificial Compression
Combination Scheme. The first step in the solution is the application of the standard
,:j. Lax-Wendroff predictor.
‘ n+; n n At n n (2)
P = 1 M - ——— -
3 CHYR S U R G D)
-
o The corrector step is the standard Lax-Wendroff operator hybridized with a first
':‘ order schemne, as follows;
- -
<. ~n+1l n Lt pntHs n+s 1 n n n n n n (3)
- =yt - =L - + = | 6] - - -
- =i Ui - e 51-5) 8 ei+&;(31+1 u;) 0,y -y )
>
»
. The last term in equation (3) is the correction term that reduces the second order
Lax-Wendroff scheine to first order in the neighborhood of admissible discontinuities.
" The switch, 3, was chosen here to be based on density gradients and is defined by;
n
> I = ‘: A4 (4)
- iy T M)
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2 , for [A, | + A, ] ~ 0
- |]A| + i, | 1+ 1% >
l ) = +‘ 1=%3

- where i
N 0 , otherwise
.r\ J
{2
'|_. &1[1(] /\..L‘Pj = I’i+1 - p)i

J .

o he concept of artificial compression is then utilized to restore the high frequency

content that has been diminished by the first order accurate Hybrid scheme. The

- -

OO

£

difference representation g, of the artificial compression flux g, is g = 280

-~ -

where

A T84 T Y
~ and min (|65, [,8 k s
) L gn (6 »
- a; = max O,min 1+l'i it (5)
::'l
~
o where k refers to the kth cornponent of the u (i.e., p, m or e) (Sli(_*J Gif_; "(k)
o Let _H_, represent the vector whose kth component is Sgn((‘) 6) Then
::-' the difference scheme which applies the ACM to the given solution ~n+l is:
RN —i
o nhl el At
= Yy g % Bia1 T By
-~ At
;" *om By~ 81850, - 18— 8541850) (6)
3
N _ ~ntl At n n
] Yy 20x% (91-645 - ——1-/) g
o where ¢ - 0t _ 0 _ 0 0y
Cipy = Bi ™ Bin) ~ By 7 Byl Sy
o Since the Artificial Compression method must not be used in smooth regions, the
N switch value is used again to limit the operation of the ACM corrector to the areas
::j of admissible discontinuities only. Thus, the final stage in the computation is:
o .
3%
hY
" n#l _ .ntl _ At .n .n n .n (7
2 =i 2Ax ity =i 81—% gi—%)
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\PPLICATION OF THE DEVELOPED NONLINEAR INSTABILITY ANALYSIS TO THE

STUDY OF PULSE TRIGGERED INSTABILITY IN SOLID ROCKET MOTORS
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CHAPTER |

INTRODUCTION

. ~milinear axial mode instabilities in solid propellant rocket motors can be

ited by randorn finite amplitude events such as the expulsion of an igniter or

dation fraginent through the nozzle. Such instabilities are usually characterized by

.« amnplitude oscillations having steep-fronted, shock-like waveforms and are often

snpanied by significant increases in mean chamber pressure. When instability is

stiated in this manner in a motor that is otherwise linearly stable (i.e., stable to

witesimal disturbances), it is said to be a "triggered" instability. The existence of

-rjered instabilities is a direct result of the amplitude dependence of the acoustic

“rigy gain or loss rnechanlsins in a solid rocket motor, e.q., pressure and velocity

ipled driving, nozzle and particle damping, acoustic mean flow interactions, etc.

i~ amplitude dependence also accounts for the forination of limit cycles in which the

I qains and losses are balanced. Triggering of instabilities in solid rocket motors by

-, witural finite amplitude pulses suggests that artificial laboratory pulsers can be used to

wvestigate this phenoinenon.

To help assure the stability of production tactical motors, the Air Force has,

celore, recently been requiring that contractors pulse prototype motors during

velopment. | done properly, the pulse testing of solid rocket motors should virtuaily

lirninate the unexpected occurrence of instability in solid rocket motors. However,

’ e use of pulses that are too strong, or pulses that do not sirmulate natural pulsing

henornena, could easily result in the unjustified expenditure of resources to solve a

coblem that, in reality, did not exist. Alternatively, tests utilizing pulses that are
widvertently too weak inight be no better than not testing at all, Thus, there is a need
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for rational pulsing guidelines directly related to the natural self-pulsing characteristics

of solid rocket motors.

The concept of evaluating motor stability by pulsing has been utilized in the past
to test both quuidl and solid propellant rocket motors.2-6 It has been deronstrated
many times that a given linearly stable motor design can be pulsed into instability.
However, the physical nechanisims responsible for the pulse initiation of nonlinear
instability are not yet fully understood. The influence of all of the pulse characteristics
(amplitude and frequency content of the pressure and velocity waveforms) on triggering
is also not completely understood at this time. The importance of properly describing
the pressure and the velocity waveforms of the pulse were deimonstrated theoretically
in Chapter 3 of Part |, wherein drarnatically different motor responses were obtained
for standing and traveling pulse type disturbances. Therefore, a complete study of
pulsing phenomena must include not only the characterization of the waveforms induced
by both natural pulses and pulse generating devices, but also an investigation of the
response of the motor to various types of pulses. With this information, it should be
possible to design pulse units that will simulate the triggering potential of natural

pulsing mechanisms such as ejection of inert materials through the nozzle.

A previous investigation of pulsing criteria for solid rocket motorsé yielded a
serni-empirical model that was limited to predicting the maximum initial pressure
amplitude of the pulse. No attempt was made to predict the pulse waveform and pulse
velocity or to couple this model with a stability analysis of the motor itself. This
investigation is the first attempt to predict, a priori, all of the pulse characteristics
generated by several types of laboratory pulser units. Moreover, this investigation is
the first attempt to combine the pulser perforimance models with a nonlinear combus-
tion instability analysis of the rnotor.
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The developinent of ballistic models for three different pulsers (pyrotechnic,
piston, and reduced brisance) was the first step in the overall model development?.,
Ballistic analysis of the pulser designs provides the mass and energy fluxes that are
injected into the motor. A nonlinear combustion instability program8 (described in
Appendix | of Part | of this report) that solves the partial differential equations that
qovern the associated flow and combustion in solid propellant rocket motors was then
rmodified 1o model the effect of fore-end pulsing based on the mass and energy fiux data
provided by the pulser ballistic analysis. Combining these models allows a priori
predictions of both the injected pulse and the combustion response to this pulse to be

peerformed.

In order 10 examine the validity of the pulse prediction models, experiments were
conducied in which closed tubes filled with cold nitrogen and helium and motors filled
with hot combustion products were pulsed by the three different pulsers. Predicted and
neasured pulse amplitudes and waveforms were then compared.  The pulser perfor-
mance models, the modifications made 1o couple these models to the chamber analysis,

and a comparison of predicted and experimentally measured pulse waveforms are

reported in Chapter 2.

The ability of the overall pulser and nonlinecar stability model to quantitatively
predict actual pulse-triggered solid rocket motor instability data for both laboratory
nd foli-scale rocket rnotors is evaluated in Chapter 3. The ability of the present
analysis 1o a priori predict the nonlinear stability of motors is inhibited by deficiencies
N exisling pressure and velocity coupling combustion response models (as described in
“ hapter 5 of Part I). Modeling deficiencies are further exacerbated by the lack of
tecurale measured values for key propellant parameters such as surface termperature,

W iivation energy and net heat release rate of the surface decomposition reaction,

thermal diffusivity etc. Moreover, as pointed out previously?, existing velocity




coupling models, including the present ad hoc nodel, are not based on an understanding

of the fundamental physical mechanisms. Given the present state of combustion

response nodeling, the key issues to be addressed in this investigation were: the ability

>
2 of the overall model to predict the relative nonlinear stability of motor/propellant
conbinations as a function of grain geornetry, operating conditions, and pulse ampli-

tudes {for a fixed propellant formulation); and the ability of the model to predict all of

the nonlinear characteristics observed in motor firing data. The first issue was

addressed by comnparing predictions and measured data for a series of laboratory scale

motor firings. The second issue was addressed by cornparing predictions and data for

both Laboratory and full scale motor firings, Comparisons of theoretical predictions

with experimental data for a series of laboratory scale tests and for two full scale

motor tests are presented in Chapter 3.

The pyrotechnic, piston and reduced brisance pulsers that were rnentioned

previously have been designed to facilitate laboratory investigations of nonlinear

instability and they all share the coimmon feature of inducing disturbances by

discharging gaseous combustion products (at a controlled rate) into the inotor

N cornbustion chamber. IHowever, the point of discharge is usually the fore-end of the

notor, 15 pposed to the aft-end point of origination for natu-ally induced nozzle ejecta

pJlses. Thus, a second study designed to siinulate naturally induced nozzle ejecta pulses

was conducted,

The preseat ejecta pulsing study, described in Chapter 4, involves both experi-

ments and the developinent of models designed to simulate ejection of combustion

charnber material through the nozzle. Pulse tests were conducted in which spheres of

different densities and sizes were ejected at the head end. The test data was used to

identify the characteristics of oscillations resulting froin nozzle ejecta and their
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\:.' ~apability 1o initiate sustained pressure oscillation in a solid rocket coinbustion

G

[\ chamber.  The test data was also used to examine the validity of the concurrenily

j developed models.

=

N

>

~ The modeling work consisted of several parts. First, a simplified model was

4 developed to calculate the motion of an ejecta through the nozzle!0. Two methods for

N predicting the resulting pulse amplitude were then developed. A semi-empirical

~ method (based on a linearized analysis) that predicts the amplitude of ejecta induced

" pulses at the nozzle entrance, was developed. The second approach utilized the existing

.:': nonlinear combustion instability model described in Part | of this report, modified to

_ accept a time dependent Mach number boundary condition at the nozzle entrance, as
delermined from the calculated throat constriction time history. Comparisons of
predictions obtained utilizing the first model and the measured initial pulse amplitudes

are presented in Chapter 3. Finally, it is shown that the modified nonlinear instability

o analysis is capable of accurately predicting the initial pulse amplitude and the motor

._-:: response to pulsing, as observed in waveform evolution, growth rate and mean charmber

.':'_ pressure,
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~' CHAPTER 2
i MODELING AND COLD FLOW TESTING
-~
o
%
PULSER PERFORMANCE MODELS
Three different types of laboratory pulsers were employed in the present study:
f the pyro, piston, and low brisance pulsers. Only a brief overview of their design and
operation is given here. Further details are given in Ref. 7.
: Pyrotechnic Pulser
i
\; A schematic of the pyro pulse‘r is shown in Fig. [. A sguib initiator ignites a
' pyrotechnic charge (Red Dot double base powder) in the combustion chamber. The
gaseous cornbustion products increase the pressure in the chamber to the rupture
,_‘ pressure of the burst diaphragm. As the diaphragm bursts, the combustion products plus
a fraction of the remaining unburned pyrotechnic charge expand into the pulser barrel
and are then vented into the chamber. A typical pressure history obtained with the
:\ pyro pulser is shown in Fig. 2. With this pulser the mass and energy flux rates reach a
maximum value in a fraction of a millisecond after the diaphragm bursts and then decay
: in an approximately exponential manner as the combustion products are vented into the
.:: chamber. The pulser is typically designed to provide a vent time of approximately 20%
7 of the period of the fundamental acoustic mode of the chamber. By varying the design
:"_ of the pulser, it is possible to control the venting time. The inain features of the pulse
.';'-; produced by this pyro pulser are a very fast rise in the pressure and mass flow rate up
- to a predetermined maximum value followed by an exponential decay with o

controllable decay rate.
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Fig. 1. Schematic of the pyro pulser unit.
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Fig. 2. Pyro pulser pressure-time function.
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Performance analysis of the pyro pulser is posed as a simple lumped volume
venting problem, neglecting dynamic effects. The analysis is based on the solution of
the bulk mass and energy balances as applied to the pulser combustion chamber. Since
the pressure ratio across the vent is very high, the vent can be assumed to be choked
durina most of the injection period. The pulser model also assumes that the back
pressure (chamber pressure) does not increase significantly. Thus, it is possible to
uncouple the pulser ballistics from the chamber flowfield solution, even for the short

time at the end of the injection during which the vent is not choked.

The conservation equations to be solved are’:

dec. Tm
v

= c Ta,~c Tm
dt

Energy Vo™ Sp

The mass flow rate through the vent is:

m, = C,C,C Ap/(1/T )1/

Y

1 x! =
ke /oY [0 - T M2, P /o) T
Y

2 -
1, PC/P<(;1] v

1/2 AL
K = ( : ) (Y l)ml)

Y- 2

The coefficient Cg provides the inass flow reduction due to subsonic flow, while
Cyw is the sonic flow coefficient. Using the equation of state for a perfect gas, the
mass and energy balances can be manipulated to form the following set of ordinary

differential equations:
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' 3—:- = {fCs(1-T/T ) - (y-l)(r/ro)”2 c! Ap]T/(pv/F) (7)
7

N P = (res-v(r/T M2 ¢t apr) (8)
AN

-': Where

"y

. C'= ccC.C (9)

w s dw
N
5 Solution of this set of equations with initial conditions (pressure, temperature, and

fraction of charge consumed evaluated at the time the burst disc fails) yields the output

’ mass flux mg and energy flow rate r?‘\onT. These values are utilized as fore-end
:. boundary conditions for the chamber flow model.

v

N

>, Low Brisance Pulser

N

wd When pulsing solid propellant rocket motors for qualification purposes, simulation

:S of natural motor pulsing phenomena is desirable. For this purpose, a pulser with longer
EE rise and decay times that simulates ejection of inert material through the nozzle is
. desirable. Pulses with similar characteristics can be produced with ejecta pulsers® that
\‘f eject inert plugs into the motor. Nevertheless, since it is not always possible to use

:j ejecta pulsers with real motors, an alternative device called the low brisance pulser was

developed. This device utilizes a variable vent area to increase the rise time of the
-

.jj::? pulse. A schematic of the low brisance pulser is shown in Fig. 3. Upon firing of the

:_ pyrotechnic charge and burst of the rupture disc, the pressure generated by the
= expanding combustion products acts on the piston base. The piston is driven back and
the vent begins to open. As the piston traverses the vent opening, the mass flux into

-; the motor increases exponentially from zero to a maximum value and then decays back

(. to zero. A typical performance curve for the low brisance pulser is shown in Fig. 4.

Both the inass injection rate and its rise time can be controlled by varying the
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parameters which affect the piston velocity. Calculation of the nass and energy flow
rates for this pulser design is based upon the bulk balance of mass and energy in the
chamber and a force balance on the piston. Mass and energy conservation equations are

given, respectively, as:

.d-m. = m. -m ('O)
dc it o

de,)Tm o ¢ T.é.-c_Té -pA u (1)
T pii p o p

The nass and energy flow rates into the breech, rm; and r?\;cpT;, are equal to the
corresponding flow rates out of the charge holder. The ballistic performance of the
charge holder is identical to that of the pyro pulser. The inass and eaergy flow rates
out of the pulser (into the imotor port), 1?10 and rﬁocpT, depend on the amount of vent
area exposed by the moving piston. The equation describing the mass flow rate through
the vent is similar to the one obtained with the pyro pulser, but with an added
multiplying factor, f, which represents the fraction of the vent area uncovered by the

moving piston.

; 12 (12)
m o= vastCwAp/(T/To)
Let xy be the distance the piston must travel before the edge of the vent is reached, x
the distance traveled, and dy the vent diameter. Then,

x < x
o, v

(13)
£~ { 2o/ Ny Zetan— Uyl fiey?)) ,0cx—x <d

1, x=x>d

Where y =({x-xy)/ry)>-1. ' (14)
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Manipulation of the mass and energy balances results in the following set of

ordinary differential equations having pressure and temperature as dependent variables:

.éB: T - -
(Vo*ApX)dt YRTimi Ym‘mo YpADu (15)

1 dT . (e .
T dac '(((ﬁi/r)'l)kmi (v 1)R'[‘Ino
| (16)
(Y-l)pApu)/(p(vo#Apx))

Piston Pulser

In order to allow for even more variation in the range of pulse characteristics
available for motor test and reseorc_h purposes, another type of pulser called the piston
pulser was designed. A schematic of the piston pulser is shown in Fig. 5. After rupture
of the burst diaphragm, the combustion gases and the unburned fraction of the charge
enter the breech volume. As the pressure increases, the piston accelerates into the
bore volume. The gases in the bore are compressed by the piston and are vented into
the motor. An ideatized performance curve for the piston pulser is shown in Fig. 6. In
reality, the pressure decay from the maximum amplitude to chamber pressure is not a
discontinuous jump, but rather a rapid decay. The reason being that when the piston
stops, the venting of the gases left in the vent volume takes a finite amount of time.
With the piston pulser the mass and energy flow rates increase exponentially with time
and decay rapidly. This is in contrast to the exponential decay only that is observed
with the pyro pulser, and the significantly (typically) slower rise and decay periods
observed with the reduced brisance pulser. The piston pulser rise time and mass flow
rate can be controlled by varying the breech charge or volume, the piston weight or
stroke and the vent area. Since the volume of the piston pulser is in practice lirnited,

RENT
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Fig. 5. Schematic of the piston pulser unit.
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Fig. 6. Piston pulser pressure-time function.
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the amount of mass that can be injected into a motor is relatively small. Thus, in order

to produce relatively high amplitude pulsas, the piston pulser must be designed with

o

o

.::-j very short rise and decay times. This produces a very brisant blip-like pulse.

L
‘.\.

. Mass and energy injection rates are evaluated from conservation of mass and energy
rl

"o and a force balance on the piston. Since tnass is not expelled, the breech mass balance
j«'_'.'_ is trivial. Conservation of the energy in the breech is written as follows:

dchm T pA (7
- - - v

- 3t viob P

o Conservation of mass and energy in the bore are written, correspondingly, as:
.':”‘I

. d~m -

: dt mo (18)
< d ) .

.- chm = pbA u=-c Tfm

dc P pro (19)
:,::: Finallv, a force balance on the piston yields
de P7Py

:‘}

. The initial pressure in the breech is the rupture pressure of the burst disc. Initial
2 conditions in the bore are identical to the initial conditions in the chamber.

o CHAMBER MODEL

‘{;2

- As mentioned previously in the Introduction, a priori prediction of pulse charac-
:, teristics and the combustion response to this pulse requires coupling of the pulser
: performance nodel to a charber flowfield and combustion model. In order to achieve

. this coupling, an existing nonlinear combustion instability imodel that solves the partial
3
"‘ . . .

‘. differential equations that govern two-phase flow in variable cross-sectional area solid
:f‘
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propellant rocket motors (described in Part | of this report) was modified to accept the

pulser mass and energy flow ratles as boundary conditions.

The flow field created by injection of pulser gases into a motor resembles an
under-expanded plume until such time when the gases (or the pressure waves created by
injection) reach the walls of the chamber. The flow field is two-dimensional, and strong
mixing will take place within a few orifice diameters downstream of the pulser exit,
Rather than attempt to model this complex problem, the present work sought to
determine if, by the use of judicious engineering approximations, a simple one-

ditnensional model of the problem could yield reasonably accurate and useful results.

When developing a one-dimensional model for the solution of this problem, one has
lo resolve the problem of specifying the boundary conditions at the fore-end and the
problem of mixing between the pulser and chomber gases. Since the flow out of the
pulser is supersonic (during most of the pulsing period with the pyro and low bhrisance
pulsers and during the interval when most of the mass is expelled from the piston
pulser), the flow variables at the pulser exit are completely dependent upon conditions
inside the pulser. Nevertheless, most of the fore-end is a hard wall at which the gas
axial velocity is zero. This head end velocity discontinuity cannot be treated properly
with g one-dimensional model, so additional approximations had to be made. Since the
pulser orifice is usually very small relative to the chamber diameter, and since the
velocity difference between the injected pulser gases and the chamber gases is large,
mixing should rapidly reduce the velocity of the gases to a subsonic level. Based on
these considerations, the following simplified model was developed. During the pulsing
period the pulser mass and energy flow rates, as predicted by the pulser performance
models, are specified as boundary conditions. When the pulser flow stops, the boundary

Ircatment reverts back to the normal treatment for a hard wall, Mixing per se was nof
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modeled, but its presence was implicitly accounted for by assuining that the pulser
Jd>es Decome subsonic in the process of instantanenusly expanding t> fill the head end

£ at
[

D i ha nber.,

The equations representing this model are as follows:

Cortinuity M= ey Y A1 (21)
Erergy éi = rﬁ] (CpT] +1/2 u]z) (22)
State P] = 0 RT] (23)
Ch F:Z(l::i:;;tic Py =P+ Py ayt (yy - u]') (24)

COMPARISON OF EXPZRIMENMTAL AN ANALYTICAL RESULTS

The experimental results presented in Figs. 7, 8, 10a, ||, and 13a were obtained
by pulsing a closed cylindrical chainber having a length of 1.22 meters (48 inches) and
an internal diameter of 0.077 meter (3.056 inches). The chamber was filled with
nitrogen at room termperature pressurized to 0.689 MPa (100 psi) chainber pressure. By
utilizing cha nbars filled with inert gases the characteristics of the different pulses and
the resulting waveforms in the charnber can be better analyzed and understood since
the conpiex iateractions between the pulser induced waves and the propellant
comoustion are eliminated. In addition, by conducting experiments with an einpty
chamber, it is possible to ohtain data at several axial locations. This results in g more
complete description of the propagating wave which, in turn, enables better
understanding of wave propagation, wave steepening, and viscous losses. In this series

of tests, the chamber was instrunented with six high frequency pressure transducers
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. onted on the sidewalls at 3, 6, 12, and 24 inches from the pulsed end and on both end

“osires. The pulser units were attached at the fore-end of the chamber.

Performance analyses of the pyro, low brisance, and piston pulsers yielded the
temperature and mass flow rate curves that are shown in Figs. 7a through Tc,
respectively. The data shown in these curves indicates that the pulser units performed
a5 expected. The time evolution of the pressure osciliations (where time is nondirmen-
v:onalized by multiplying dimensional time by the sound speed divided by the chamber
i« ngth) initiated in the chamber by the pyro, low brisancé, and piston pulsers are shown
in Figs. 8, 10a, and |1, respectively. The very short rise and decay periods of the pulse
initiated by the low brisance pulser (shown in Fig. 10a) is a result of the low back
pressure (in the chamber) acting on the piston surface. Thus, in this case, the pulse and
the resulting wave in the chamber are very similar to those generated by the pyro
pulser. The wave is already fully shocked after propagating only three inches into the
chamber. The pressure oscillations excited by the piston pulser (Fig. | 1) feature a very
fast rise and decay (siinilar to the pulse pressure and mass flux variation). The total
mass injected by the piston pulser is small compared to the total mass in the chamber
(about 0.3%). The relatively large amplitude of the resulting pressure oscillations in the
chamber is due to the fact that most of the mass in the piston bore is injected into the

~hainber in a very short time.

lime cvolution of pressure oscillations in the chaimber, obtained by utiiizing the
predicted tnass and energy flow rates as boundary conditions for the nonlinear
~oinbustion instability programn, are shown in [Figs. 9, [0b, and (2 for the pyro, low
brisance and piston pulsers, respectively. Very good agreement between the measured
and predicted waveforins (amplitude and shape) is demonstrated. Table | shows a

~aormparison of the measured and predicted maximun pressure anplitude values at the
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Figs. Ba-f. Time evoiution of measured pressure perturbations
at several locations along the chamber generated by the pyro pulser.
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aft-end for the first four wave periods, Fxcellent agreement is demonstrated. The fact

CANANAFIAE 1L

that a simplified one-dimensional model could accurately predict the wave amplitude
shape and decay rate for the first 4-5 cycles was somewhat surprising, but also very
satisfying.  The one-di:nensional inviscid model does not account for viscous losses at
the walls of the chamber, thus, the predicted decay rates were not expected to match
the measured decay rates, The excellent agreement between the predicted and
measured decay rates for the first few cycles results from the fact that the initially
high decay rates are primarily due to entropy increase resulting from repetitive shock
wave processing of the gas in the chamber. During this time interval, viscous wall
losses are a relatively insignificant part of the total losses. The capability of the
present model to predict entropy increase and waveform decay rates (for several test
cases) that are in excellent agreement with closed forin analytical results has been
demonstrated in Part | of this report. Nevertheless, as expected, results obtained with
this inviscid model do not maich 1he. experimental decay rates at later tirmes, when

viscous wall losses become the major loss mechanism,

A second series of cold flow tests was conducted using helium instead of nitrogen
under otherwise identical conditions. Again, excellent agreement was demonstrated

between the measured and predicted waveforms.

When hot gases are injected into a cold chamber (cold chambers pulsed by the
pyro and low Srisance pulsers), a large temperature gradient is formed near the fore-

end. This temperature gradient results in partial refiection of the shock returning from 1

the aft-end which, in turn, results in pressure waves that are not as steep-fronted as

those predicted at the aft-end. In addition, the development of a slight expansion in i
front of the shock can also be observed (as shown in Fig. 13). These phenomena are .

observed in both the measured and predicted data, In the experiment, convection,
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N Table I.  Comparison of measured and predicted maximum pressure amplitude values at
ﬁ::f the aft-end.

~ Pyro Low Brisance Piston
Cycle measured predicted measured predicted measured predicted
o ! 112.0 118.2 75.2 88.48 20.4 15.16
~F 2 59.9 64.7 48.0 47.68 12.5 12,51
1 3 46.8 47.62 36.0 36.36 9.6 11.47
4 38.9 39.38 27.5 29.78 7.6 10.8
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Figs: 10a-b. Low brisance pulser; comparison between measured and
predicted pressure perturbations at the aft end.
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conduction, and mixing rapidly reduce the temperature gradient. The current analysis
Jdoes not treat mixing or heat conduction, thus, convection is the only operative heat
- transfer mechanism. Since convection is a slow process (due to the low velocity of the
N gases), the calculated temperature gradient remains unrealistically steep for a
relatively long period of time. This results in predicted maximum fore-end pressure
amplitudes that are lower than the measured data. The predicted results at the center
of the tube (Fig. 9c) show the marked difference between waves reflected from the
fore-end and waves reflected from the aft-end. This temperature gradient phenomenon
R should not affect the predicted results when solid rocket motors are hot pulsed, since
| both the injected pulser gases and the combustion products in the chamber are at

approximately the same temperature.

An additional point should be made concerning the performance analysis of the
V piston pulser. The piston (driven into the bore by the high pressure in the breech
volume) is stopped by a Teflon stopper located at the aft-end of the bore volume. The
. compression of the Teflon stopper has to be accounted for since the pressure and mass
injection rates are rapidly increasing as the piston completes its stroke. Because the
remaining volume occupied by gases at that time is small, a relatively small error in
estimating the final compression distance of the Teflon stopper (referred to herein as
stand-off distance) can result in a relatively large error in the predicted maximum

arnplitude value of the wave initiated in the chamber.

The predictions presented for the piston pulser (Figs. |2a and i12b) were obtained '

g R v ¥ W N

utilizing a stand off distance of 0.0375 inches. The predicted pressure results remain

qualitatively the same for different stand-off distances; nevertheless, there are

quantitative changes. For instance, the maximum amplitude of the first incident wave
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Figs. 1la-b. Piston pulser; time evolution of measured pressure
perturbations at two locations in the chamber.
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Figs. 12a-b. Piston pulser; time evolution of predicted pressure
perturbations at two locations in the chamber.
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Figs. 13a-b. Pyro pulser; comparison of measured and predicted pressure
perturbations at the aft end of the chamber.
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at the aft-end is 8 psi with a stand-off distance of 0.10 inches, |10 psi with a stand-off
distance of 0.05 inches, and |5 psi with a stand-off distance of 0.0375 inches. Thus,
previous knowledge of the stand-off distance is needed for accurate prediction of the

pulse amplitude produced by the piston pulser.

Spatial evolution of pressure waves in the first half wave period, as initiated in
the chamber by the pyro and piston pulsers is shown in Figs. l4a and |4b,
respectively. The differences between these pulses are evident in the figures. The
very fast rise and decay times of the pulse generated by the piston pulser result in a
very narrow steep-fronted and steep-backed wave. The prediction of such waveforms in
a sharp-nonoscitlatory manner is a formidable test of a numerical scheme. The ability
of the present numerical technique to reproduce these waves with only slight post-
expansion oscillations is another indication of the excellence of this shock capturing
technique for all types of wave propagation problems. Spectral analysis of the very
narrow wave predicted for the piston pulser (results at the fore-end are shown in Fig.
I5) indicates a very high percentage of energy in the higher modes. This result is
significantly different from spectral analysis results obtained for an N-type waveform
(discussed in Part 1) for which the energy contained in the higher modes falls as 1/n2

with respect to the energy contained in the fundamental mode (where n is the mode

number).

A second series of experiments was conducted utilizing a 1.22 meter (48 inch) long,
0.038 ieter (1.5 inch) internal diameter chamber filled with hot combustion products.
A subsonic vent was utilized to maintain a constant pressure of 6.89 MPa (1000 psi).
The chamber was instrumented with six high frequency Kistler pressure transducers,
The transducer locations were the same as used in the cold flow experiments, The pyro,

low Srisance, and piston pulsers were utilized to pulse the chamber at the head end.
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Figs. T4a-b. Spatial evolution of pressure waves in the chamber
initiated by the pyro and piston pulsers.



The total mass discharged froin each pulser was held constant, with a ratio of mass

injected to rass in the chamber of 0.005.

<

o

! 'é The characteristics of the resulting pressure waves in the chamber obtained with
« the pyro and piston pulsers are, in general, similar to those obtained in the cold flow
_: scries of tests. The low brisance pulser results were, however, significantly different.
.‘ In the cold flow tests, the back pressure acting on the piston was too low, resulting in a
2 rise time that was too short and a pulse shape very similar to that generated by the
f:'. pyro pulser. In the hot gas tests, the back pressure is high and a much slower rise time
was obtained. The resulting pressure wave in the chamber (shown in Fig. 16a) is
b4 significantly different from the wave generated by the pyro pulser (Fig. 16b). The
\ wave generated by the pyro pulser is already fully shocked after propagating 3 inches
.- into the chamber. In contrast, the wave generated by the low brisance pulser is steep
AN

. but never fully shocked and the transition to a sinusoidal type waveform is faster.
Although the total mass injected by the pulsers was identical, the pressure amplitudes
of the waves generated are a strong function of the mass injection rate; faster injection
- yielding higher amplitudes. The maximum amplitude of the first reflected pressure
wave at the fore-end generated by the piston pulser was 11| psi, compared to 52 psi for
the pyro pulser and 32 psi with the low brisance pulser.

-

%

:

\ 227

- . et - . e T S S T
s AT, ‘.-x.’_‘.‘\ o ..-_._ A S T T e SR STHTA .

AL AR i




Fig.

0.0

1600
FREQUENCY H:

3200

15. Piston pulser; PSD as a function of frequency at the fore-end.
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pyro pulsers.

Hot flow tests; comparison of measured pressure
perturbations in the chamber initiated by the low brisance and
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CHAPTER 3
: DREEDIC TIONS AND EXPERIMENTS FOR LABORATORY AND FULL SCALE MOTORS
-i LLABORATORY SCALE MOTORS
A series of experiments was conducted by Aerojet Tactical Systems Company
: (under contract FO4611-8i-C-0007 with AFRPL) in which several laboratory scale motors
. with the same propellant and different grain geornetries and nozzles were pulsed by
different pulsers at different operating pressures.
The test motors were 1.22 meters (48 inches) long and had an internal case
’ Jiameter of 5.7 centimeters (2.25 inches). Partial length grains were located at the
fore-end of the motor. The grains were partially recessed into the case. Thus, at soine
tiine towards the end of a firing a flush grain configuration was achieved. Prior to this
3 time, the grain represeﬁfs an area constriction, and after this time, the grain is
: recessed relative to the case diameter. Two types of pulsers were used in the tests to
be reported herein, i.e., pyrotechnic and piston pulsers7. Two pulser units were
J attached to the fore-end of the motor for each test.
”
2
Instrumentation
; The pressure oscillations in the motor were recorded at six axial locations using
a “istler Model 703 piezoelectric pressure transducers. A single DC (Taber) transducer
vas used to record mean pressure. The transient pressures in the breech of the pulse
[~
\ mnits were also measured with piezoelectric transducers. Thermal shielding of the
pressure transducers was accornplished using vulcanized rubber (RTV). Based on shock
:'. tube calibration tests, it was concluded that an RTV thickness of 0.317 cm (0.125 inch)
a Adelds  optimal resolution of the high frequency content of the steep-fronted
P
Lo

»
b

Lo e . T

B T L N S L R -\-' -« v

- - - - - - - - 7. - . . . ‘-‘.‘n‘_.‘n'.-'--'.‘-
- - L .- .-' . . oo LI PR . \' . e ._'\ ..‘ e q."."' =7 . »“ ..‘.&'-\ « . R .
N e N e e P S T e S e T - - PR N
4 g RERTAE ~ A A .



- o W
-t et \r"’ P il i ol ol abut- i A" o AL i albe - and ol aliic ".V,_I ._"."‘, .':-":‘- ,'—-\'- LSafE AN "J_

shock waves, within the constraint of adequate insulation. With a 0.125 inch RTV
coating, the resonant frequency of the transducer is reduced from approximately 90
kHz to about 64 kHz with an amplitude accuracy within approximately [0 percent. At
this level, high frequency measurements can be obtained up to about 20 kHz.
Nevertheless, artificial oscillations at very high frequencies (termed transducer ringing)
that are observed in the transducer response immediately following the passage of a
shock wave, could not be completely eliminated. Therefore, the measured pulse
amplitudes reported herein were corrected for this effect, in an approximate manner,

whenever present,

Pulse Predictions

The ability of the combined pulser/chamber model to accurately predict the pulse
induced waveforms in closed chambers filled with cold inert gases, has been deimon-
strated in Chapter 2. The validity of the pulser modeling under actua!l motor firing

conditions was examined in this study.

Test PCC3 utilized a grain length of 22.8 centimeters (9 inches) and an initial
internal grain diameter of 3.17 centimeters (1.25 inches). Two piston pulsers, each
having 0.7 grams of Red Dot powder, but having different stroke lengths, were used.
The pulse units were fired at motor burn times of 0.95 and |.17 seconds, when the mean
pressures were 10.37 MPa (1503 psi) and |1.45 MPa (1660 psi), respectively. Figures |7a
and | 7b compare the measured and predicted pulser breech pressure time histories for
the two pulses. Very good agreement was obtained for the primary pulse; however, the
analysis cannot predict the sinall secondary pressure variation that is produced in some

cases when the piston bounces off the lead stop instead of sticking to it.
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Test PCC4 utilized a grain length of 20.32 cm (8 inches) and an internal grain
diameter of 3.17 cm (1.25 inches). In this test, two pyro pulsers having 0.165 grams of
Red Dot powder were fired 0.98 and |.2| seconds into the motor firing, at chamber
pressures of [1.12 MPa (1612 psi) and 12.25 MPa (1776 psi), respectively. Figures 18a
and 18b show a comparison of the 'measured and predicted breech pressure time
histories. Excellent agreement was obtained, demonstrating the ability of the pulser
performance model to predict the breech pressure, and consequently, the mass and

energy flux rates into the combustion chamber.

It will be shown in the next subsection that, when the mass and energy flux rates
calculated using the piston and pyro pulser performance models were used as houndary
conditions for the nonlinear stability analysis, excellent agreement between the
predicted and measured pulse qmpli'ﬂ}des o'nd waveforms was also obtained. These
results, as well as the results of additional comparisons not reported herein, demon-
strate the ability of the pulser/chamber model to accurately predict the pressure

perturbations produced by laboratory pulse units.

Stability Predictions

It was noted previously that several of the paraimeters that determine the
pressure coupled response versus frequency characteristics of the burning propellant are
unknown. To overcome this deficiency, this set of parameters and the magnitude of the
velocity coupled response were chosen to yield a best fit for pulse | of test PCC3, This
test was established as the baseline, and all of the other stability predictions (for the
same propellant) were carried out leaving these values unchanged. All of the pararneter
values utilized here were physically reasonable.
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Figs. 18a-b. Comparison of measured and predicted pyro pulser
breech measurement, test PCC4.
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The time evolution of the mean chamber pressure rneasured during test PCC3 by a
Taber transducer located at the fore-end, is shown in Fig. 19. The inotor was stable in
response to the first pulse and was driven unstable in response to the second pulse. The
measured fore-end pressure oscillations induced in the notor by the first pulse are
shown in Fig. 20a. The first piston pulser induced wave has an amplitude of .724 MPa
(105 psi, or 7 percent of the mean pressure). 1t should be noted that all initial pulse
amplitudes are quoted at the fore-end of the -notor for the first wave reflected froin
the aft-end. The initial shocked waveform rapidly decays to an clnost sinusoidal
waveform, indicating that the rnotor is stable to this pulse. The predicted time
evolution of pressure oscillations for this case, obtained by utilizing the predicted inass
and energy flow rates as boundary conditions for the nonlinear combustion instability
program, is shown in Fig. 20b. The set of parameters listed in Table 2 was utilized in
this "baseline" test. FExcellent agreement is demonstrated between the measured and
predicted initial pulse amplitude <;nd waveform, the decay rate of the pulse, and the
ternporal evolution of the waveforms decay rate and harmonic content of the waves.
The temporal evolution of the waveform, as observed in both the predicted and the
measured data, is of special interest, The generation of a second shock wave is
attributed to partial reflection from the area discontinuity at the end of the solid
propellant grain, a discontinuity that still exists at the time the first pulse is fired.
This reflected shock wave is initially amplified in time as the original pulse decays,

until it dominates the waveform.

Since the gases injected fron the piston pulser are ol a significantly lower
temperature than the gases in the hot notor, a large temperature gradient is forined
near the fore-end, resulting in the formation of expansion waves behind the propagating
shock. This phenomenon is observed in both the measured and predicted duta. In the

experiment, the rmixing of the hot propellant products with the cold gases reduces the
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Chamber pressure as a function of time, test PCC3.
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Figs. 20a-b. Comparison of measured and predicted pressure
perturbations at the fore end, test PCC3, first pulse.




temperature gradient rapidly. The current analysis does not treat mixing, thus the
calculated temperature gradient remains unrealistically steep for a relatively longer
period of time (about 7 wave cycles in the predicted data as compared 1o about 4 in the
measured data).  in contrast, when hotl gases were injected into a cold chamber

(Chapter 1), an expansion is developed in front of, rather than behind the shock.

The measured fore-end pressure oscillations for test PCC3 pulse 2 are shown in
Fig. 21a. In this case, the piston pulser produced a pulse having an amplitude of about
0.43 MPg (63 nsi, or 3.8% of the mean pressure). The predicted pressure history is
shown in Fig. 2Ib. The predicred puise amplitude (3.8%) and waveform, as well as the
temporal evolution of the waves (shape, amplitude and growth rate) are all in excellend
agreement with the measured data. For instance, after |5 wave cycles, both the
measured and predicted waves have an amplitude of 5.2% of the mecan pressurce.
Without changing any of the parameters (Table 2) from those employed in predicting the
first puise, the analysis was able to correctly predict that the second pulse waould

trigger a sustained nonlinear instability,

In the second motor firing considered (PCC4), pyro pulsers were employed instead
of piston pulsers, the grain was shortened to 20.32 cm (8 inches) aond the nozzie
diameter was reduced. The mean pressure history for this test is shown in Fig. 22. The
pulsers were fired at 0.98 and .21 seconds into the motor firing at mean pressures of
11.12 MPa (1612 psi) and 12.25 MPa (1776 psi), respectively. At ithese conditions, the
motor is marginally unstable - in a linear sense - at the second mode frequency, and low
level spontaneously initiated oscillations are observed throughout the firing. As in test
PCC3, the first nulse of test PCC4 failed to produce sustained nonlinear oscillations,

whiie the second pulse did trigger a nonlinear instability.
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Figs. 2la-b. Comparison of measured and predicted pressure
perturbations at the fore-end, test PCC3, second pulse.
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Fig. 22. Chamber pressure as a function of time, test PCCA4.
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Figures 23a and 24a show the measured time evolution of pressure oscillations at
the fore-end of the motor induced by the two pulses. The corresponding calculated
results are shown in Figs. 23b and 24b. Despite the presence of the residual
spontaneous 2nd mode oscillations, which are unaccounted for in the analytical results,
the predicted and measured initial pulse amplitudes and waveforms, and the wave
growth rate (2nd pulse) and decay rate (Ist pulse) are all in very good agreement. The
anplitude of the first pulse was ineasured to be 2.5 percent of the mean pressure, while
the predicted value was 2.6 percent. For the second pulse, the ineasured value was 2.3
percent and the predicted arnplitude was 2.4 percent. Here again, the analysis was
successful in predicting the motor response to each of the pulses. After the first pulse,
both the data and predictions show that the pressure oscillations first increase for about
six wave cycles and then decay slowly. The amplitude of the second pulse was near the
limit cycle amplitude; hence, the pressure oscillations increase only slightly following
the pulse. In both cases, the measured ;:md predicted wave amplitudes at the end of 15

wave cycles are in very good agreement.

The third and last set of data obtained in this series of tests, test PCC2, was also
conducted with a 20.32 cm (8 inch) long grain, but at significantly lower chamber
pressures. Two piston pulse units were fired during this test at chamber pressures of
8.84 MPa (1282 psi) and 10.21 MPa (1481 psi). The first pulse, with initial amplitude of
about 0.33 MPa (48 psi or 3.74 percent of the mean pressure), decayed rapidly into a
sinusoidal waveform. The results were qualitatively similar to those obtained in test
PCC3, but with a somewhat larger decay rate. The second pulse, with an amplitude of
0.4 MPa (58 psi or 3.9 percent of the mean pressure), increased initially in amplitude (to
about 4.6 percent of the mean pressure after 6 wave cycles), but then decayed. Thus,
at the lower pressures used in PCCl4, both pulses were stable. The theoretical

predictions for this motor indicated very good agreement with the measured data. Both
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Figs. 23a-b. Comparison of measured and predicted pressure
perturbations at the fore-end, test PCC4, first pulse.
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Figs. 24a-b. Comparison of measured and predicted pressure
perturbations at the fore-end, test PCC4, second pulse.
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he stable and the analysis correctly predicted that the first pulse would decay rapidly
and that the second pulse would grow initially and then decay slowly. The initial pulse
amplitudes and waveforins were also accurately predicted.  The ineasured data for
PCC2 pulse | demonstrated reflected wave behavior (from the areu discontinuity at the
el ol Ul Goalny siodlar to that observed in response to the first pulse of test PCC3.

This observed behavior was again correctly predicted by the analysis.

Before applying the nonlinear analysis to the prediction of nonlinear instability in
full scale motors, an additional laboratory scale motor cornparison was conducted with
o more complex and motor-like grain distribution than those einployed in the previoas
tests. The propellant distribution for test firing 4 is depicted in Fiqg. 25. A pyro pulser
(attached to the fore-end) generated a pulse at ﬂ.we time when *“e propellant burned
back to a flush condition, with an amplitude of 5.1% of the 9.897 MPa (1435 psi) incan
pressure. The time evolution of the :neasured and predicted pressure oscillations at the
fore-end are shown in Fig. 26. Excellent agreement is dermonstrated between the
measured and predicted data. The initial pulse amplitude was predicted to be 5.1% of
the inean pressure, in agreement with the neasured value. After |5 wave cycles, the
armplitude of both the neasured and predicted waves was 6.2% of the mean pressure. In

addition, the ineasured and predicted waveforins are very similar. It should be

mentioned that the coinposition of the propellant in test 4 was slightly different than
that utilized previously. The propellant parameters utilized to predict the pressore-

time data for this case are shown in Table 3.

In the laboratory scale tests discussed above, only sinall (£1%) instabitity induced
mean pressure shifts were observed. The analytica! solutions for these cases also

predicted only sinall shifts in mean pressure.
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Fig. 25. Propellant grain distribution, test 4.
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Figs. 26a-b. Comparison of measured and predicted time evolution
of pressure perturbations at the fore-end, test 4, second pulse.
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FULL SCALE MOTORS

An assessmeni of the validity of the present nonlinear instability model would not
be complete without examining its ability to predict nonlinear instabililty in full scalce
motors. Data from two motor firings were selected for use in the present comparison
study. Motor A and Motor B, as they will be termed, were development reduced smoke
motor designs. Both motors 'were stable until pulsed; were pulse iriggered into

sustained nonlinear instability; and exhibited DC shifts in mean pressure after putsing.

Details of the pulser designs utilized to pulse these motors were not available.
Thus, predictions were obtained by varying the input mass flux until the experimentally
observed pulse amplitude was reproduced. As in the case of the baseline faboratory
scale motor, the parameters which control the characteristics of the pressure and
velocity combustion response as a fn;nction of ffequency were varied 1o obtain the best
agreement possible. It should be recalled that the issue to be addressed in this study
was the capability of the present analysis to predict all of the nonlinear characteristics
observed in full scale motor instability data and not the capability to a priori predici

motor response to pulses.

Motor A

A number of different grain designs and propellants were tested during this moltor
development program. The motor selected for this comparison study had a five poini
gear grain configuration, and a grain length of 1.65 meters (65 inches). The propeliant
utilized was an AP oxidized reduced smoke propellant containing a small amount of
stability additive. The motor was pulsed with a piston pulser two seconds into the firing

when the chamber pressure was 10.69 MPa (1550 psi).  The cross-sectional arca and

.
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Fig. 27. Motor A; axial variation of flow area and cumulative
burn surface area.
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Figs. 28a-c. Comparison of measured, corrected and predicted
time evolution of pressure oscillations at the fore-end, motor A.
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E: cumulative burn surface area, at the time of pulsing, are plotted in Fig. 27. For the
E: sake of computational efficiency, certain small details of the grain distribution were
] modified. A single fore-end mounted transducer (Kistler Model 603A) was used to
monitor the pressure oscillations. The transducer had a 0.25 ecm (0.1 inch) coating of
RTV for thermal protection and a stand-off distance of 2.29 cm (0.9 inch). In its
: mounted configuration, the transducer had a resonant frequency of about 6000 Hz.
~!
2
: The measured time evolution of the pressure oscillations following the pulse are
i shown in Fig. 28a. Although not evident in this figure (DC pressure changes were
filtered out), the motor experienced a 10.9% increase in mean pressure (DC shift) as a
result of the pulse induced instability. The waveform of the pressure oscillations is
~ quite nonlinear, and is primarily a single traveling shock wave. The combination of a
iil shocked waveform, with its attendant large high frequency content, and the low
resonant frequency of the Kistier transducer in its mounted configuration, resulted in
r transducer resonance (or ringing)-ond distortion of the true waveform. This
phenomenon is more clearly evident when the analog tape is speed-scaled before
digitization and plotting. The presence of this ringing precludes the accurate
_ quantization of the wave amplitude, but hand correction for this effect (see Fig. 28b)
produced a wave history that is satisfactory for the present qualitative comparison
::;‘ study.
<.
<
‘ The parameters shown in Table 4 were utilized as input data for the nonlinear
i“: combustion instability model. The predicted time evolution of pressure oscillations is
_' shown in Fig. 28c. Excellent agreement between the measured and predicted data was
.'.: obtained. Both the predicted and measured oscillations grew from the initial pulse
:.r: amplitude of 3.4% to amplitudes between 22 and 24% after Il to |3 wave cycles, and

decreased slightly afterwards. The predicted DC pressure shift (11%), and the

predicted wave shape, were also both in close agreement with the experimental data.
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During development work on Motor B, a number of motors were pulse tested to
Jetermine their nonlinear stability. The motor selected for this study had a fore-end
finocyl grain configuration with three fins. The motor had a grain length of [66.4 cm
(65.5 inches) and a fin length of 55.88 cm (22 inches). An AP oxidized reduced smoke
propellant containing a burn rate retardant was utilized in this test. The motor was
»ulsed with a pyro pulser 2.78 seconds into the firing when the chamber pressure was
5.38 MPa (780 psi). The cross-sectional area and cumulative burn surface area, at the
time of pulsing, are plotted in Fig. 29. Each motor was instrumented with two Taber
transducers for mean pressure measurement, three accelerometers, and a Kistler 606A
high frequency transducer located in the fore-end closure. The Kistler was recessed
about .78 ¢m (0.7 inch) and was protected by a 0.25 cm (0. | inch) coating of RTV. The

resonant frequency of the transducer was in the range of 5-10 kHz.

It can be seen from the fore-end pressure oscillation history, presented in
Fig. 30a, that the instability data for this motor is significantly compromised by
transducer ringing. These results demonstrate the importance of keeping the

transducer resonance frequency as high as possible in future pulse testing of solid

motors.

The time evolution of pressure oscillations for Motor B is more complex than that
of Motor A, and is characterized by the presence of multiple, variable amplitude shock
waves. Thus, correcting the data for transducer ringing becomes fairly subjective.
ilevertheless, it is possible to approximate the true response by mertally removing the
thin spike-like top portion of each wave front. As in the laboratory scale motor firings,

the complexity and multiple shock wave nature of Motor B's pressure history is
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Figs. 30a-b. Comparison of measured and predicted time evolution
of pressure perturbations at the fore-end, motor B.
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attributed to partial wave reflections from an internal area discontinuity in the
chamber. In Motor B (Fig. 29) the only sizeable flow area discontinuity is located
approximately one-third of the way between the fore-end and the end of the grain.
Correspondingly, the multiple shock waves are spaced at intervals approximately equal
to one third of a full wave cycle. It should be mentioned, however, that while not
presented herein, existing data and analytical results show that multiple shock waves
can also be driven by propellant combustion, e.g., when the propellant transient
response is much higher at the second (or higher) longitudinal mode frequency than at

the fundamental mode.

The propellant parameters shown in Table 5 were utilized in obtaining the

analytically predicted pressure oscillation history for Motor B shown in Fig. 30b.

Comnparing figs. 30a and 30b, it is noticed that the theoretical results qualitatively
reproduce the complex tertiary shock wave behavior present in the experimental data.
Both the experimental and predicted wave histories contain two relatively stronger ’
shock waves and one weak shock wave. In the predicted data, a repetitive pattern is
observed in which the weaker of the two dominant waves grows until it becoines the
larger shock wave. In the experimental data, the relative amplitudes of the two larger
shock waves vary in time, but not in as cyclical a manner. Relatively good agreement

between the predicted and ineasured wave amplitudes and DC pressure shifts was

obtained. Both the neasured and predicted DC shifts were approximately 10% of the

mean chamber pressure (the DC shift in the experiimental data was filtered out and is

not discernible in [Fig. 30a).
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CHAPTER 4

EJECTA PULSE STUDIES

LXPERIMENTAL APPARATUS

The ejecta pulse test apparatus consists of a thick walled combustion chamber in
which either partial, or full length, cylindrical grains were loaded and fired!0. Two
ejecta pulsers were attached to the fore end of the chamber. A schematic of the ejecta
pulse test apparatus is shown in Fig. 3. The combustion chamber had an overall length
of 1.22 meters (48 inches) and an internal case diameter of 5.7| centimeters (2.25
inches). Nozzle entrance and exit angles were 450 and 159, respectively. The partial
X length cylindrical grains were partially recessed into the case. Thus, at soime time
| toward the end of the firing, a flush grain configuration was achieved. Prior to this

time, the grain represented an area constriction. After this time, the grain was

Pl B P B

recessed relative to the case wall. AY predetermined times during the firing, the
pulsers ejected a sphere into the chamber which was carried out through the nozzle by
the flow of combustion gases. To simulate the range of material densities found in
cornbustion chambers, a series of tests were carried out using spheres made from RTV

rubber (utilized in most of the tests), nylon, Teflon, and steel.

The pressure oscillations in the motor were recorded at six axial locations using

Kistler 703 piezoelectric pressure transducers. The chamber sidewall was instrumented

with four close-coupled pressure transducers, one transducer was located at the fore-

) end closure and one in the convergent section of the nozzle. The transducer ports were
rnachined so that the transducer diaphragms were offset by 0.125 inch. This cavity was

potted with vulcanized rubber (RTV) which is utilized to provide thermal shielding

YN NEL
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Fig. 31. Schematic of the ejecta pulse test apparatus.
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for the pressure transducers. In its mounted configuration, the transducer had a
resonant frequency of ubout 65 kHz, as determined by shock tube tests. With this high

N value for resonant frequencies, the amplification error should be less than 2 percent for

a {2 kHz signal.

Ejecta Trajectory

The prediction of the pressure pulse waveform that results from the transient
partial blockage of the nozzle (termed nozzle ejecta) requires calculation of the nozzle
: constriction as a function of time. Therefore, it is the ejecta velocity as well as its

physical size that determines the pressure pulse waveform. The equation of motion for
. the ejectais F = m d—ts’ where m is the ejecta mass, ue is the ejecta velocity, and F is
the force acting on the particle. For a particle whose density is large compared to that

of the gas medium, and when the fluid acceferation is low, the equation of motion is

: written as:

du
e _ 1 - (25)
mgE = 7 Cq olu-ug)u-u,|A
where u is the gas velocity, and c( is the drag coefficient.
The force acting on the ejecta is a combination of viscous drag and pressure 1

differences across the ejecta surface (termed pressure drag). At high velocities the
pressure dray is largely a result of flow separation which causes a non-uniform pressure
distribution over the surface of the body. Measured drag coefficients are usually
presented as a plot of total drag (viscous plus pressure) as a function of Reynolds
number.  Schlichting! | presented sphere drag data for both compressible and

incompressible flow. For incompressible flow, the drag coefficient is approximately

N equal to 0.4 in the range of Reynolds numbers from 103 to 3 x 105 At the critical
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Reynolds number of 3 x 103, the drag coefficient drops sharply. Compressibility effects
act to increase both the drag coefficient and the critical Reynolds number. [For Mach
numbers in the range of 0.8 to 4.5 and Reynolds numbers in the range of
2 x 105 to 9 x 105, the drag coefficient is insensitive to Reynolds number and its value
is approximately 0.65 to 0.75. Experimental data obtained during ejecta pulse tests
iinply average velocities in the tirroat region of about 600 to 3000 inches per second,
depending on the ejecta density, initial injection velocity, and motor mean pressure.
With these values, the [Reynolds number would be in the range of 2 x (0% to 105, This

range encornpasses the critical Reynolds number for incompressible flow.

The existence of strong, mean flow pressure gradients in the nozzle may have a
significant influence on the drag force. Nevertheless, for the sake of simplicity, such
potential pressure gradient effects have not been considered in the present work and
only the conventional drag force was incorporated in the ejecta trajectory analysis.
Pressure measurements at the nozzle entrance were then used to estimate the

appropriate value of the drag coefficient. Details of the approximate analysis are

described later in this section.

tjecta Pulse Modeling

The nozzle geometry during spherical ejecta passage is shown in FFig. 32, where;
Ac is the nozzle entrance area, Aq, the ejecta area, Ay, the throat area, a, sonic

velocity, u, gas velocity, and , is the gas density.
A simple model for calculating the ainplitude of the ejecta indiced pulse at the

nozzle entrance plane was developed. The assumptions involved were: the flow in the

nozzle is one-dimensional and isentropic and the ejecta only affects the instantaneous
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nozzle throat area. As the ejecta enters the throat, a series of weak compression
waves propagate upstream towards the nozzle entrance slowing the flow. Aftar the
maximum diameter of the ejecta passes through the throat, a series of expansion waves
propagate towards the nozzle entrance at a slightly higher velocity than the
compression waves. Using linear wave propagation theory, the ratio of the
instantaneous pressure at the nnzzle entreaes, p, to the initial undisturbed entrance

pressure, p , can eventually be ~xpress o

-1y 2 -1 w27 (2Y)/(¥-1)
5, = LOFE 50140 M) (26)

Thus, the instantaneoss pressure iy determined once the nozzle entrance Mach number,
M, is known. In order to determine M, a quasi-steady nozzle behavior was assumed i.e.,
the instantaneous Mach number can be calculated using steady-state relations. The

initial undisturbed nozzle entrance Mach number is given by
- =1, 2y, 2 yq (Y#1)/2(x-1)
My = LG M%) ()] 27)

where J = Aj/Ac is the initial undisturbed value of the nozzle constriction ratio. The
Mach number at the nozzle entrance plane during the ejecta passage is then given by
Eq. (27) with M| replaced by M and J by J(1-fp) (where fp, is the fraction of the throat
area blocked ot any instant). The quasi-steady nozzle assumption should be most
applicable to larger, slower moving ejecta. As the ejecta velocity increases, the quasi-

steady assumption leads to over prediction of the pulse amplitude.

Equation (27) is a transcendental equation for M as a function of J. However, if it
is assumed that 0.5 ( -1) M2 is small compared with one (M| is typically on the order

of 0.l and = 1.23), M|, and M can then be expressed as
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M, - J(% (y+1)/2(y-1) (28)
| o Dr#1)/2(y-1)
-: M= JU-fb)(;;T)
~. Inserting Eqs. (28) into Eq. (26) and neglecting terms on the order of 0.1J, vields the
. . following expression for pulse amplitude

-

: PP g (2, (HI2GED) 09
v, 1 p T ] be

' with an isentropic exponent, , equal to 1.2, Equation (29) becomes

»

: L. 0.7 £y o

1

\ Thus, this simple model predicts that the pulse amplitude is proportional to the product
of the initial constriction ratio and the fraction of the throat area blocked by the
: ejecta, and provides a good basis for data correlation. Comparison of predictions
::Z' obtained utilizing this model with experimental data are shown later in this section.

3

: MNurnerical Model

b A second approach for calculating ejecta pulse amplitudes was developed by
,' modifying the nonlinear combustion instability analysis described in Part |. This

cornputer program, which solves the coupled nonlinear partial differential equations

that govern the one-dimensional, two-phase flow in variable cross-sectional area solid
.f rocket motors and the transient combustion of the solid propellant, was trodified to
_,.. accept a time-dependent Mach number boundary condition at the nozzle entrance.

5

%

In this approach, the ejecta trajectory is calculated as described previously. The

»

Pl '/ DA

quasi-steady assumption was retained, thus, the nozzle entrance Mach number is given
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‘E by Eq. (27), with J replaced by the instantaneous nozzle constriction ratio. The
::. program calculates the flow variables at interior mesh points using an advanced shock
- capturing finite difference integration techniquz while the method of characteristics is
\E employed at the boundaries. Thus, at the nozzle entrance, the specified Mach number
' 2 boundary condition that describes effect of ejecta passage through the nozzle (i.e., the
- generation of compression and expansion waves) is conveyed to the combustion chamber
/ via a left-running (upstream) characteristic.

Since the nonlinear combustion instability analysis treats the whole problem (i.e.,
the time evolution of oscillations in the motor, coupled with the propellant response),
~ this approach is not limited to the calculation of the ejecta-induced initial pulse
o amplitude. It is also capable of calculating the waveform of the pulse and the resulting
=

: motor behavior, i.e., growth or decay of the disturbance. The ability to model the
::‘ nonlinear response of solid rocket motors to pulsing had been demonstrated in Chapter 3
- for low brisance, piston, and pyrotechnic pulsers attached to the head end of the
‘ chamber. A comparison between predictions and experimental data obtained by ejecta
:.-:: pulsing subscale rocket motors is presented in the following sections.

'3: EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

, Experirments

N

i A series of motor firings was carried out using the previously described test
- apparatus and instrumentation. The results of nine of these tests are considered herein.
: AP-HTPB propellant grains with lengths varying from 8 to 48 inches, initial inside
\_ diameter of 1.25 inches and outside diameter of 2.375 inches were tested. Spherical ;
_\' ejecta of different materials were employed to study the effect of density variations. :
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The materials consisted of nylon, rubber, Teflon, and steel, having densities of 0.039,
0.040, 0.075, and 0.275 Ibs/in3, respectively. Ejecta size was also varied, resulting in

throat blockage ranging from 32 to 69 percent. The test conditions are summarized in

Table 6.

Pulse Duration - Ejecta Trajectory Model Evaluation

Tests 5, 6, and 7, in which materials of three widely different densities were
employed (nylon, Teflon and steel, respectively), provided an excellent means for
evaluating the capability of the previously described approximate model to calculate
the ejecta trajectory (velocity) as it transits the throat. These tests also provided a
basis for assessing the effect of ejecta density variation upon the resulting pulse
amplitude and waveform. The initial pulsed waveforms measured at the nozzle
entrance and at the chamber fore-end closure in response to the first and second pulses,
are shown in Figs 33 and 34, respectively. The tést results are summarized in Table 7.
The pulse amplitude and duration listed in Table 7 refer to the initial disturbance at the
nozzle entrance. Later measurerments of the pulse, after it has been reflected from
either the fore-end or the nozzle end, show that at that time the pulse has
approximately doubled its initial amplitude. This is a consequence of the reflection

process for a traveling wave.

lJsing the previously described methodology, ejecta trajectory calculations were
performed for two assurned values of ejecta initial velocity, and three different values
of the drag coefficient, The calculated pulse durations (time for ejecta to pass the
throat plane) are tabulated in Table 8. From a comparison of Tables 7 and 8, it is
cencluded that: pulse duration is only weakly dependent upon drag coefficient and

‘nitial ejecta entrance velocity; and that a reasonable choice of these parameters
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T?BLE 6. Comparison of Measured and Predicted Pulse Amplitudes at the Head-End
Closure

Test No. Grain Length(In.) Ejecta Size(ln.) Fraction Blocked Ejecta Materiol ChamberPressure(Psi)

{ 19.7 4375 364 RTV 990

2 is 4375 A4S RTV 832

3 12 375 482 RTV 993

4 8 .375 126 RTV 200

5 16 4375, .60 369, .694 NYLON 905,877
é 16 4375, .60 .369, .654 TEFLON 805,856
? 16 4375, .60 .369, .694 STEEL 751,811
8 32 .5 204 TEFLON 1085

9 48 .872 575 TEFLON 1200
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Pulse
Pulse|Ejecta {Density Dianm, f (max)|Press, Duration
Mat'l [(1be/tn?){(inches)| b (pst) (millisecs.)
1 [Nylon 0.039 0.4375 | 0.369 0.34
2 {Nylon 0.039 0.60 0.694 0.59
1 |Teflon 0.075 0.4375 | 0.369 0.49
2 |Teflon 0.075 0.60 0.694 0.74
1 |Steel 0.275 0.4375 | 0.369 0.88
2 |Steel 0.275 0.60 0.694 | 81l 1.1
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Table 7. Ejecta density variation tests.
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Ejecta Ejecta Ve " 100 in/sec e " 300 in/sec
Densltx Diam. CD Duration Duration
(1b/4in°)]| (inches) (sillisecs) (milltsecs

0.039 0.4375 0.5 0.36 0.40

0.6 0.34 0.6

0.7 0.32 0.2

0.40 0.5 0.5 0.58

0.h 0.50 0.52

0.7 0.46 0.50

-

0.075 0.4375 0.5 0.52 0,96

0.6 0.48 0.90

0.7 0,44 0.46

0.60 0.5 0.74 0.78

n.6 0.66 0.70

0.7 0,64 0.h6

0.275 0.4375 0.5 0.99 0.9

0.6 0.90 0.86

0,7 0.A82 0,82

0.A0 0.5 1.3R 1.32

0.k 1.2R8 1.22

0.7 l.1h 1.1A

Table 8. Computed pulse durations.
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results in calculated pulse durations that are approximately correct. The resuiting
pulse amplitude is also relatively insensitive to ejecta velocity (except, as will be
pointed out later, for very fast ejecta velocities). Thus, efforts to improve upon the

present simple ejecta trajectory prediction methodology do not appear to be warranted.

For present purposes, the remainder of the ejecta trajectory calculations were
carried out using an entrance velocity of 100 inches/second and a drag coefficient equal
to 0.6. Using these values, the fraction of throat area blocked was calculated. Figures
35 and 36 show the variation of fraction of throat area blocked as a function of time for
the first and second pulses of tests 5-7, respectively. The ejecta velocity increases
monotonically with time as it passes through the nozzle (barring collision with the
nozzle walls). Thus, the time interval from initial blockage to maximum throat

blockage is longer than the time required to return from maximum blockage to the

original cleared throat area. Hence, the initial waveform of the ejecta pulse, measured

at the nozzle entrance, should have a shallower front (rise) and a steeper back (decay).
The initial measured waveforms all have this characteristic (which is especially evident
with the slower steel balls); however, nonlinear wave propagation effects (i.e.,

steepening, viscosity, viscous wall losses, etc.) rapidly cause the wave shape to change

to a steeper wave front and a shallower back.

FVALUATION OF PULSE AMPLITUDE PREDICTION MODELS

Semi-Empirical Model

[he experimentcl ejecta pulse test results that are shown in Table 7 were also
used to examine the validity of the previously described pulse amplitude prediction
models. Since £q. (30) predicts that the pulse amplitude is proportional to the product

fhJ, the ineasured pulse amplitudes were plotted as a function of fJ (Fig. 37). The




data fall below the theoretically predicted line (<§;p/pl = 0.71 fpJ), and is reasonably
correlated by dp/pl = 0.6 fpJ. The over prediction of pulse amplitude is rnost likely a
result of imposing a quasi-steady approximation in the mode! development. As
expected, the greatest deviations from the predicted values are for the smallest,
fastest moving, ejecta. The two lowest pulse amplitudes shown in Fig. 37 (having the
largest deviations) were obtained using smaller rubber ejecta injected into the motor at
higher velocities than the other ejecta (larger quantities of black powder were utilized
in the ejecta pulser unit). The measured pulse durations of these ejecta at the nozzle
entrance were only 0.3 milliseconds. Conversely, the two nylon ejecta data points at
fyJ values of 0.035 and 0.0435 were obtained for larger (slower) ejecta in a 3.0 inch

diameter test motor. Until @ more accurate, fully transient, two dimensional model

describing ejecta motion through a nozzle is developed, the relation Sp/p = 0.4 fp)
1

should probably be used instead of the aforementioned relation when ejecta pulse

durations are expected to be in the range of 0.2 to 0.4 milliseconds.

In full scale motors, the larger ejecta necessary to produce reasonable pulse

amplitudes should have dwell times on the order of a millisecond, and the relation

Sp/p = 0.6 fi,J should yield reasonably accurate predictions of initial pulse amplitude.
1

Numerical Model

The task of defining pulse amplitude is not as straightforward as it seems since
the amplitude of the pulse varies with axial location in the motor. Thus, simale
correlations of predicted and measured "pulse amplitude" values cannot tell the whole
story. It has already been mentioned that when a traveling pulse reflects from the
head-end closure, its amplitude at the head end is approximately double its anplitude at

the middle of the chamber. Several other physical processes involved in wave
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5
e
::;,ﬁ; propagation can affect the measured pulse amplitude. One such effect is the formation
* of a system of multiple shock waves that results from the partial reflection of the pulse
::' from area or grain discontinuities or the continuous partial reflection/transmission of a
: pulse traveling in a variable cross section area chamber.
e
0,
:‘)’" Since the numerical model properly treats the operative nonlinear wave
\? propagation mechanisms, it can treat the pilse amplitude prediction problem without
~
-' the necessity of defining a single value for "pulse amplitude." In addition, being a
':_:’ complete nonlinear combustion analysis, the nu nerical approach can also be used to
‘ l..: predict the motor response to ejecta piilsing (see next subsection).
N
: Although the present nunmerical model has the above advantages, it still employs a
quasi-steady assumption in specifying the time dependent Mach number boundary
:.:: condition at the nozzle entrance. Thus, it was expected that some empirical correction
\" of the boundary condition would be necessary to achieve accurate pulse amplitude
S_, predictions. The calculated results bore out that expectation. When the fraction of
:' throat area blocked as a function of time was empirically modified, using the results
- shown in Fig. 37 as a quide, the predicted and measured pulse amplitudes were in
- excellent agreement, as shown in Table 9. The results also verified the ability of the
:.' analysis to predict the observed waveforms, and its ability to correctly predict the
‘\' change in pulse amplitude and waveform as it traverses the combustion chamber (over
-Z-f'-" several wave cycles).
:
: Motor Response to [=jecta Pulsing
-
%

Triggered nonlinear instabilities were observed in all of the tests shown in

Table 9. In tests |, 2, 3, B, and 9, the first ejecta triggered the instability, while in
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TABLE 9

e
E‘
»

Comparison of Measured and Predicted Pulse Amplitudes
(in Percentage of Mean Pressure)
at the Head End Closure

Head End
Test Number Measured Predicted
I first pulse 3.4 3.5
2 first pulse 3.6 3.7
3 first pulse 1.7 1.8
4 first pulse 1.6 |.6
5 first pulse 3.9 3.8
5 second pulse 9.6 10.8
6 first pulse 4.4 4.7
6 second pulse 9.7 10.2
7 first pulse 5.9 6.1
7 second pulse 9.2 10.3
8 first pulse 6.6 7.8
9 first pulse 19.9 22.7
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tests 4, 5, 6, and 7 the motor was stable in response to the first pulse but unstable in
response to the second pulse. It has been obhserved that the amplitude of the
oscillations increased as the grain was lengthened. Small increases in mean chainber
pressures (DC shifts) were observed whenever the motor sustained nonlinear instability.
The DC shift also increased in magnitude as the length of the propellant grains was
increased. In addition, significant changes in the oscillations waveform were observed.
As the grain was lengthened, the waveform becane narrower and steeper (both front
and back). Thus, it was concluded that longer grains are capable of sustaining waves

with considerably more high frequency content than shorter grains.

The nonlinear combustion instability analysis was utilized in Chapter 3 to predict
the response of solid rocket motors to piston, low brisance, and pyrotechnic pulsers.
Excellent agreement between the measured and predicted motor response was
demonstrated. As explained therein, present deficiencies in combustion response
modeling require that some of the parameters in the transient combustion models be
empirically adjusted to best fit the experimental data. In the piston and pyro pulsing
investigation, the constants were determined from one test and were used successfully
in predicting the results of five other pulses. The motors and propellant used in this
previous study were the same as used herein, except that the grain lengths were not
significantly varied (8 to 9 inches), and the motors were p«.;lsed at considerably higher
chamber pressures (!500-1900 psi). Results obtained using the nonlinear model to

predict motor response to ejecta pulsing are discussed below,

Figures 38 to 41 show comparisons between the predicted and measured head-end
pressure oscillations for tests |, 6, 7, and 9. Since the ejecta tests used the same
propellant as the earlier piston and pyro pulser tests, the initial ejecta calculations

were made using the same combustion response parameters. The final solutions shown
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in these figures employed the same values for the parameters that determine the

pressure coupled response. Nevertheless, as expected, the velocity coupled response
function values had to be varied, as the grain length varied, in order to achieve best
agreement with the data. The ad hoc velocity coupling formulation used in the present
analysis does not model the governing fundamental physical mechanisims (which remain
to be identified). Thus, the fact that it cannot predict the proper variation of velocity

coupling with grain length should not be surprising.

The velocity coupled response functions used in the predictions ranged from 2.9 to
4.6. In general, the longer the grain, the lower the value of Ry, used. In Chapter 3, a
value of Rye equal to 3.5 was used with 8-inch long grains; however, the chamber

pressure in the earlier tests was about double that of the present tests.

In test |, the motor was driven unstable by the first pulse. At this time in the
firing, the partial grain is not flush with the chamber wall. As discussed in Chapter 3,
the area discontinuity causes multiple reflections of the primary shock wave as it
traverses the chamnber. Figure 38 shows that the analysis predicts the observed
occurrence of multiple waves (one reflection before and one reflection following the

primary shock wave), and also shows the ability to predict the observed growth rate of

the oscillations.

Figures 39 and 40 for tests 6 and 7, respectively, demonstrate the effect of ejecta
density on motor response. Both motors were stable in response to the first pulse and
unstable in response to the second pulse. As previously discussed, both the Teflon (test
6) and steel (test 7) ejecta produced approximately the same initial pulse omplitudes {at
the nozsle entrance), however, the lighter Teflon ejecta produced a much narrower

pulse than the steel ball. The Teflon induced pulse is already shocked by the time the
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putse teaches the head-end of the motor. As time progresses, this pulse slowly widens

and decays in amplitude until limit cycle conditions (amplitude and waveform) were
achieved. The response to the steel ejecta is considerably more complex. The steel
induced initial waveform is almost a pure fundamental mode disturbance with very
little higher harmonic content. The transformation to a steep fronted wave takes about
nine wave cycles (during which time the amplitude continuously decays). Only when
the wave becormes a traveling shock does it begin to grow. As the wave grows it
changes shape, and eventually reaches approximately the same limiting amplitude and

waveform as the teflon pulsed motor.

The predicted behavior for tests 6 and 7 (shown in Figs. 39 and 40) closely
parallels the observed motor respense. The initial pulse amplitude and waveform, the
time evolution of the pressure wave and limiting amplitude are all correctly
reproduced. The ability of the analysis to ccrrectly reproduce the complex behavior of

test 7 was particularly gratifying.

Figure 41 shows the pressure data ineasured at the head end for test 9 (full length
grain). The first ejecta produced a narrow pulse, with a measured amplitude at the
head end closure of 250 psi. This pulse initiated a sustained instability in the motor.
The waveform development in this case was distinctly different from that in notors
with short partial length grains. The narrow initial pulse became even a narrower,
spike-like wave, followed by a small second compression wave. The full length grain
also produced a substantially larger mean pressure inzrease (DT shift) than the partial
length grains. The DC snift of about 10 percent is not apparent in the experimental
data because the DC pressure component of the transducer signal has been filtered out.
The DC shift is apparent in the calculated results, which in addition to predicting the
observed mean pressure shift, also correctly predicts the initial and the time evolution

of the amplitude, waveform growth, and harmonic conteni.
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Although not shown herein, good agreement was also obtained between the

DA

predicted and measured results for tests 2, 3, 4, 5, and 8. In all cases where the first

pulse was stable and the second unstable (tests 4, 5, 6, and 7), the analyses correctly

Lor A

predicted that behavior without any need to adjust the combustion response parameters.

LACPLA

It should also be mentioned that tests 6 and 7 are two of the best examples, to date, of

R

experimental evidence supporting previous analytical predictions that the limit cycle is

I'J_ LW,

independent of the characteristics of the initiating disturbance.
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CHAPTER 5

CONCLUSIONS

Based on the results obtained in this investigation, it was concluded that the
original objective of dcveloping o model capahle of the accurate, a priori, prediction of
mass and energy flow rates produced by four diff:rent types of laboratory pulsers and
the waveforms produced by these pulsers inside a chamber (i.e., motor response to

pulses produced by these pulsers), was achieved.

Ballistic models of the pyro, low brisance, and piston pulsers vere developed
utilizing a simple fumped volume treatment. The mass and energy flow rates calculated
using these pulser performance models are utilized as boundary conditions for the
chamber flow problem, which is solved using a modified nonlinear combustion instability
model, The ability of the combined ;;u'lser/chomber flow models to predict the pulsed
waveforms (amplitude and harmonic content) in a closed chamber filled with cold gases
(nitrogen and helium) was demonstrated in this report. Excellent agreement between
the measured and predicted pressure waves in the chamber was demonstrated even
though a simple one-dimensional inviscid analysis was vtilized 1o model a complex two-

dimensional viscous process.

Both the experimental and analytical results demonstrate that the pulse
characteristics are primnarily governed by the mass flux rate from the pulser into the
chamber. The pulse waveform was very similar to the shape of the respective pulser

mass flux curves for each of the three types of pulsers tested.

On the basis of the comparisons with motor firing data carried out to date with

the pyro, low brisance, and piston pulsers, the following conclusions have been drawn:
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N
3 The ability of the developed pulser/chamber model to accurately, a priori, predict
s both initial pulse amplitude and waveform, under actual solid rocket motor firing
n conditions, has been demonstrated.
O
- When the parameters which control the pressure and velocity coupled propeliant
: response were empirically fixed on the basis of a single "baseline" pulse test, the
j‘ nonlinear model was shown to be able to quantitatively predict the measured nonlinear
‘3 stability of five other pulse tests with the same propellant, but with varying grain
- geometry, operating conditions, pulser types, and pulse amplitudes. Thus, the present
( analysis should provide a useful preliminary design tool for predicting the relative
:: nonlinear stability of candidate motor design variations.  With further advances in
combustion response modeling, the nonlinear model should eventually provide an a priori
_ means for quantitatively predicting the nonlinear longitudinal stability of solid rocket
.: motors.
:
:: In view of the known deficiencies in the combustion response models utilized, the
‘:: ability of the analysis to simultaneously match imeasured wave amplitudes, waveforms,
.-_-f DC shifts, and in many cases, growth (or decay) rates, was satisfying, although
' ’ somewhat surprising. It seems likely, therefore, that the present combustion models at
' least contain all of the essential factors which produce the nonlinear behavior that can
be attributed to the propellant response.
! A series of ejecta pulsed motor firings was conducted in simple laboratory scale
. motors with full and partial length cylindrical grains. Ejecta size and density were
y

varied to provide information on the effect of these parameters on pulse amplitude,

l“i.c'. '.‘
A A_A

pulse waveform, and the ability to trigger nonlinear instability. Each of the motors was

pulsed twice, and all were triggered into sustained nonlinear instability.
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A simple trajectory analysis was developed to calculate the velocity of the ejecta
as it transits the nozzle. The model considers only the drag force on the ejecta and

neglects effects due to gas flow pressure gradients and ejecta-flowfield interactions.

v MO [

L
-k

Relatively good agreement between predicted and ineasured pulse durations wns

W

obtained. Parametric calculations demonstrated that the pulse duration is only weakly
dependent on initial ejecta velocity and the value used for the drag coefficient; thus, an
effort to develop a more complete model of the ejecta dynamics does not appear to be

warranted.

Two models for predicting ejecta pulse anplitudes were developed. A simple
mode! based on linear wave propagation theory and the assumption of quasi-steady
nozzle behavior, and a numerical model which utilizes the quasi-steady nozzle
assuinption to provide a nozzle entrance boundary condition for a comprehensive
nonlinear instability analysis. The simple model is limited to the prediction of the
ejecta induced pulse amplitude at the nozzle entrance plane. The nuinerical nodel is
more complete and can predict the initial pulse amplitude and waveform at all locations
in the motor (not just the nozzle entrance plane) as well as the temporal and spatial
evolution of the pulse, i.e., the motor response to ejecta pulsing. The sirnple method
predicts the pulse amplitude to be proportional to the product of the fraction of the
nozzle area blocked and the initial constriction ratio of the nozzle §p/p =0.71 f,J, A
semi-empirical expression of the form d&p/p = 0.6 fpJ yields a good correlation of the
data, supporting the wvalidity of the analysis and demonstrating that the quasi-steady
assuinption leads to over prediction of pulse amplitude. As ejecta size decreases,
velocity increases and pulse duration decreases. ‘When pulse duration is decreased to
the range of about 0.2 - 0.4 milliseconds, the data is better correlated by

§ p/p,= 0.4 f5). Comparisons with data verified the ability of the analysis to predict
the observed waveforms, and its ability to correctly predict the change in pulse

armplitude as it traverses the combustion charnber.
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'Q: The test results demonstrated that both pulse amplitude and pulse duration
2 influence the ability of a pulse to trigger instability (higher amplitudes and shorter
ps pulse durations enhance triggering potential). The observed greater susceptibility of
:: motors to triggering at later burn times agrees with many other previous observations.
' Oscillation amplitudes, DC shifts, and amount of high frequency content were all
‘,' observed to increase with increase of grain length (in a motor of fixed length). The
,:: existence of area discontinuities, when the partial length grains are not flush with the
.:; case, results in multiple wave reflections, which, in general, make it more difficult to
.:: trigger such configurations into instability.
.:;“: Many of the complexities observed in unstable motor oscillations are caused, or
strongly influenced, by discontinuities in the grain geometry. This is especially true for
multiple shock wave behavior induced by partial shock wave reflection at area
:'.- discontinuities.
( The wide range of waveforms and nonlinear behavior observed in the experiments
:; result from interactions between a number of complex nonlinear physical phenomena.
:.:: Comparisons between predictions obtained with the present comprehensive nonlinear
instability analysis and the experimental data indicate that the model is capable of
: predicting all of the observed characteristics, i.e., pulse amplitude and waveform,
:'_;: waveform evolution, growth rate, DC shifts, waves that decay and then grow (and vice
versa), etc.
:4
N
-7': Although the present analysis appears to contain all of the essential factors
j,' necessary to produce the observed nonlinear behavior of solid rocket motor instabilities,
: the results of the present comparison study, in which grain lengths were syste:natically

1

varied, point out deficiencies in the existing modeling of the effect of acoustic velocity
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oscillations on the combustion response of the propellant (velocity coupling). The
present predictions require empirical adjustment of the velocity coupled response to
obtain the best possible agreement. Further progress in the understanding and modeling
of the physical mechanisms which govern the combustion response of solid propellants

must be accomplished before quantitative, a priori, stability predictions can be

obtained.

It is strongly recommended that great care be taken in future inotor pulse testing
to ensure that the piezoelectric pressure transducers are mounted and protected in a
manner that will keep the resonant frequency of the transducer as high as possible.
Resonant frequencies above 60 kiHz should be sought in order to keep transducer

"ringing" effects fromn significantly compromising the integrity of the data.

Additional comparisons with motor data should be carried out to further evaluate
the ability of the present analysis to predict the effect of grain design, pulse type and

pulse amplitude, for a wider range of propellants, motor operating conditions, and pulse

characteristics than contained herein.
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NOMENCLATURE

a gas only, speed of sound

A vent area

Ap piston area

A chamber area

cC charge weight

Cq orifice coefficient

p isobaric heat capacity

Cs subcritical flow correction

Cy isochoric heat capacity

Cw sonic flow coefficient

dy vent diameter

5 energy venting rate into the' chamber

f fraction of burning pellets remaining in pyro pulser

F pyro pulser coefficient, RT,

fy fraction vent area opened by piston travel in brisance pulser

g gravitational constant

K a parameter defined in Eq. 5

m mass of gas in combustion chamber

IT'1b mass burning rate of pyro charge

rr'n mass venting rate into chamber

vr"to mass flow rate out of pulser
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n charge burning rate exponent

N number of charge pellets in chamber

p pressure

Pb bore pressure

Pc motor chamber pressure

R specific gas constant

My vent radius

s web fraction burned

5 rate of change of web fraction burned

t time

T gas temperature

T; temperature of the combustion products entering the breech
To isochoric flame temperature

U piston velocity

v| gas velocity at chamber fore-end

vy Vo volume, and initial volume, respectively

Xy Xg piston travel, and total stroke, respectively

Y isentropic constant
o density

Subscripts
| - mesh point No. | located at the fore-end

I' - origin of left running characteristics reaching point No. 1.
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